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Abstract—Billions of apps are published each year in the
mobile application distribution market. However, a large number
of these apps are unsuccessful due to poor user attention
and satisfaction as reflected by low ratings on the distribution
markets. Recent studies have investigated the app popularity
from users’ perspectives, but none of the studies have compared
it from a developer’s perspective. To fill this gap, we analyzed
the user ratings and reviews with the software characteristics:
ratings, issue report contents, number of bugs and enhancements,
and developers’ team structure. In order to do this, we examined
274 apps on the Apple App Store that also had their source
code available on GitHub. We collected 19,655 app reviews
and 13,193 issue reports from both platforms. Generally, app
users’ satisfaction and reviews on App Store did not reflect the
developers’ preferences and issue report contents on GitHub.
Furthermore, results suggested larger team sizes and the presence
of subteams of developers had a significant impact on ratings.
Our findings may have implications for practitioners to improve
their mobile app development practices.

I. INTRODUCTION

Application distribution markets (“App Stores”) allow for a
faster dissemination of mobile app software and are growing
at a fast pace. Mobile app software development is a highly
profitable and competitive business [!]. Each year, billions of
apps are downloaded from app stores [2]. However, a large
number of these apps fail due to poor user attention (few or
no downloads) [3], [4]. For example, 80% of paid Android
apps received less than 100 downloads and more than 60% of
Apple apps were never downloaded [3], [5]. Hence, making
profits on app stores is challenging for developers.

The revenue and profit for an app is directly dependent on
the user base. To sustain an app it is crucial to improve users’
experiences and satisfaction [0]. One way to measure this is
to utilize the ratings systems on app stores that allows users
to provide their opinions regarding an app [5].

Recent research has found relationships between app ratings
and factors such as change and fault proneness to adopt a
project, complexity of the user interfaces, and application
churn [7], [8], [9], [10], [ 1]. However, it is still not apparent
how factors related to mobile app development like bugs
and enhancements reported in issue reports, user opinions

expressed in app reviews, and team structures can impact
app popularity. To fill this gap, we investigated the influence
of these factors on the user experience to assist struggling
developers.

To analyze and understand software engineering paradigm
of app development, we collected two types of information
- users ratings and reviews from the Apple App Store and
project related information (e.g. issue reports, developers in-
volved) from GitHub. These provided us with a rich and inter-
related set of data.

We addressed the following research questions:

o RQ1: Is there any relationship between the ratings on
the App Store and GitHub? We studied the distributions
of the ratings and the Spearman correlation coefficient
to determine whether there is a correlation between the
App Store and GitHub ratings. The distributions of the
ratings from the App Store and GitHub does not have any
correlation, suggesting that app users and developers have
different perspectives regarding their satisfaction with the
app.

e RQ2: Do issue reports reflect the opinion of users of
the App Store? We used Natural Language Processing
techniques, in particular, Bag of Words representation
and sentiment analysis to compare the contents of the
user reviews from the App Store and the issue reports on
GitHub. We found that the contents of the issue reports
were seldom included in the contents of the app reviews
and vice versa. Similarly, sentiment values of both users
in user reviews and developers in issue reports did not
correlate. These results signaled that users and developers
have different views and feedback regarding the apps.

e RQ3: What is the relationship between the software
quality and the popularity of the apps? We processed the
labels of the issue reports and identified common labels
for all the projects (i.e. bugs and enhancements). We
analyzed their distributions and the Spearman correlation
coefficient values. The projects that had high GitHub
ratings had a high number of bugs and enhancements.
Most of the high rated apps on the App Store had a
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Fig. 1: Flow chart of the study evaluation process.

small number of bugs and enhancements. Thus, indicating
different developer and user perspectives on the quality
of the apps.

o RQ4: What is the relationship between the team struc-
ture and the popularity of the app? We built a social
network of the developers for each app based on GitHub
data and analysed the structure of the network using the
app ratings on GitHub and the App Store as metrics.
We found that bigger team sizes typically get better
App Store ratings than medium or smaller-sized teams.
Also, the more structured a team is (inferred by detecting
communities) in terms of subteams, the better ratings it
will attract from the GitHub developers, but not from App
Store users. Therefore, team size is a significant factor in
app popularity among developers and users.

The contributions of this paper are:

o« We empirically verified that there are differences in
the user satisfaction and developers’ perception of the
software quality of a mobile app. The users differed from
developers in their ratings, sentiments, review contents,
reaction to bugs and enhancements, and developers’ team
structure.

« We found that large sized teams developing mobile app
software when grouped in sub-teams received better rat-
ings by their peer developers in contrast to smaller sized
teams. The well coordinated sub-teams received higher
ratings on GitHub as well as App Store.

II. DATA PREPARATION

In this section, we describe our process of data collection,
preprocessing for extracting features, and the identification of
variables for analyzing the data for our research questions.
Figure 1 describes the steps of our methodology from data
collection to data analysis.

A. Data collection

App List: We used a publicly available list of mobile
iOS applications maintained by the GitHub community [12].

When we collected the data, the list contained 847 apps with
information such as the project name, the URL to the Apple
App Store, and the URL to the GitHub project for each
app. The apps were categorized by functionality, we manually
reviewed the categories in the original list and unified some of
them (e.g. the category “fitness” was merged with “health”).
The reviewed categories and their frequencies are reported in
Table 1.

TABLE I: Frequency of Mobile App Categories

Category Frequency | Category Frequency | Category Frequency
Apple TV 14 Location 38 Extension 14
Apple Watch 44 Media 111 Finance 24
Browser 8 miscellaneous 160 Game 79
Calculator 6 News 26 Health 25
Calendar 2 Official 17 Keyboard 8
Clock 3 Reactive Prog. 20 Text 16
Color 3 Sample 33 Timer 6
Communication 29 Scan 2 Travel 6
Developer 56 Security 19 Weather 12
Education 11 Shopping 4 Event 15
Emulator 9 Social 13 Tasks 14

Data from the Apple App Store: We selected the Apple
App Store because: (1) it is one of the most popular application
distribution markets [13], (2) it was the first application
distribution market (2008) that exploded the development of
mobile apps [14], (3) it has strict development policies and
publishing guidelines for every product/app to be approved and
showcased in the market [15], and (4) it provides a Application
Programming Guide with guidelines for various aspects of
iPhone app development [16].

From the app list, we were able to collect 274 apps from
the Apple App Store that had active links; and, out of those
274 apps, 161 contained app reviews. The app reviews were
collected from the App Store using a crawler that collected
the RSS feeds of each app. These RSS feeds were processed
to extract the following features:

1) App Store Ratings: The Apple App Store allows its
users to give their aggregated opinions about an app
they downloaded in the form of 5-star ratings.

2) App Reviews: Apple App Store also allows its app users
to leave detailed review comments of the app. This is
the App Store’s effort to allow the community of users
to provide feedback on whether the apps are reliable,
perform as expected, and the experiences users have with
the apps.

Data from GitHub: GitHub is arguably the largest collab-
orative software development platform, hosting 100 million
repositories[ | 7]. Some activities on GitHub include forking
projects (creating a copy), reporting issues, contributing code,
and global collaboration [!8]. From the app list, we were able
to retrieve 808 apps with active links on GitHub; the remaining
projects no longer existed, because they were deleted by the
authors. To collect data from GitHub, we used a web crawler
to scrape the following features of each project:

1) GitHub Ratings: GitHub uses a unary (like-based) rat-
ing system. Each project on GitHub may be given a star
by developers as a medium of expression to show their
liking for the project. The number of stars represents the



number of developers that liked the project, and a high
number of stars signals popularity of the project with
developers.

2) Commits: A commit is an individual change to a file or
a set of files and allows committers to leave comments.
Every change on a Git repository creates an unique ID
(SHA) that allows to keep a log of the changes with
information of the files changed, the changes made, the
comments, the time, and the user who made that change
(committer).

3) Committers: GitHub users that have commit access
to the project repository are known as contributors.
Contributors collaborate in the project and are allowed
to make changes to the project but they can be re-
moved from it by the project owners. To have more
realistic measurements about the development teams, we
extracted the name of the users who made commits to
the project (a.k.a. committers). We consider the use of
committers more appropriate since the commit log of a
project is permanently saved with the project, along with
the commit comments and other GitHub activities. We
consider number of committers/developers/contributors
as equivalent to the team size of a project.

4) Issue Reports: Issue reports contain information on
bugs, enhancements, or other requests from developers.
In our data, we collected the title and body of the issue
reports. In addition, we collected the labels associated
to the issue reports such as bug and enhancement.

We wrote the web crawlers for both Apple App Store and
GitHub using Python’s beautifulsoup library [19].

B. Preprocessing Data

The raw data related to user reviews collected from the App
Store and the issue reports from GitHub was preprocessed
using the following steps:

Extracting content: We extracted the title and the body
from app reviews and issue reports.

Changing to lowercase: For consistency, we converted all
upper cases to lower cases.

Removing non-words: For some reviews, we removed
numbers and punctuation symbols, as they do not add emo-
tional value to the content and make the interpretation of
frequencies inaccurate.

Removing stop words: We removed popular stop words
such as the, a, in, as these do not provide context.

Removing URLs: We removed URLs from the content
since they cannot be interpreted.

From the 161 Apple (i0OS) apps that had reviews, we
collected 22,671 users’ app reviews. We extracted 133324
words from app reviews and after preprocessing, 126394
words remained for the final analysis.

Out of 808 projects, only 493 projects contained issue
reports on GitHub. From those projects, we were able to collect
a total of 19,605 issue reports, that had a total of 2,73,371
words. After preprocessing, 214196 words remained for the
final analysis. We collected the data over a time period of

TABLE II: Descriptive statistics about the variables for each
research question.

RQs Term Std Med Avg Max Min
RQI,  GitHubRatings 148049  76.50  523.80  20169.00  0.00
RQ3,  AppStoreRatings 0.79 3.93 3.85 5.00 1.00
RQ4:  NumOfContributors 27.08 2.00 7.70 288.00 0.00
NumOfCommitters 62.69 2.00 11.96 953.00 0.00
RQ2:  IssueReports 1243.47  73.00 43447 13300.00 1.00
AppReviews 862.43 369.00 785.06  3170.00  9.00
RQ3:  IssueLabel(bug) 16.75 0.00 2.54 280.00 0.00
IssueLabel(enhancement) 11.04 0.00 2.86 133.00 0.00
RQ4:  Disconnected_components. 0.10 1.00 1.01 2.00 1.00
Modularity. 0.06 0.00 0.03 0.48 0.00
NumCommunities 1.15 1.00 1.61 11.00 1.00
AvgOfCommonRepositories 17.63 5.00 11.04 181.00 1.00
AvgOfDensity 0.18 0.92 0.84 1.00 0.24
AvgOfNumOfConnections 301.05 3.00 48.73 3412.20 1.00
AvgOfSize 13.83 3.00 6.20 157.67 2.00
MedianOfCommonRepositories ~ 17.30 4.33 10.19 181.00 1.00
MedianOfDensity 0.19 1.00 0.84 1.00 0.20
MedianOfNumOfConnections 226.93 3.00 3549 3073.50 1.00
MedianOfSize 12.45 3.00 5.87 157.00 2.00

around 3 months and we made the dataset and the replication
package publicly avaiblable'.
We used the library tm in R for preprocessing the raw data.

C. Measuring Variables

After preprocessing the data, we identified variables from
the Apple App Store and GitHub that were necessary to answer
each research question. Table II shows the descriptive statistics
for the variables used in our study.

III. APPROACH AND RESULTS

In this section, we present the motivation, approach, and
findings for each research question.

A. RQI: App Store vs. GitHub Ratings

Motivation. The apps on the app stores and projects on
GitHub use a rating system to show the popularity of an app or
a project. Apps on app stores use a S-star ratings while projects
on GitHub use a unary rating system. We conjectured that apps
which have high ratings on the app store and are popular with
users may have high ratings on GitHub from developers as
well. Hence, we formulated RQI: Is there any relationship
between the ratings on the App Store and GitHub?

Approach. We studied the popularity metrics of both com-
munities: the 5-star ratings provided by the App Store and the
number of stars collected from GitHub. We chose the ratings
rather than reviews, as they represents an average for the whole
app and combines both positive and negative evaluations of a
feature [20]. The Spearman correlation [21] coefficient was
used to determine whether there is a correlation between the
App Store and GitHub ratings.

Findings. We selected 149 apps with ratings that appeared
on both the App Store and GitHub. We investigated RQ1 using
the Spearman correlation coefficient r between the ratings on
App Store and GitHub but found no significant relationship
between both variables (r = —.111;p = .176). To further
understand these results, we did an in-depth analysis and
found:

Thttps://drive.google.com/open?id=1ZvXjZihd VxXf-zuDkpGwdUN-
IdnrRyJE



Observation.1a: More apps were popular with App Store
users in comparison to GitHub developers. Figure 2 (scatter
plot), shows that most of the apps that had a high rating on
the App Store had relatively low ratings on GitHub. Figure
3 illustrates the distributions of the ratings found on the
App Store (left) and GitHub (right). 83% of the apps on the
App Store had a rating > 3 stars. In contrast, 13% of the
total number of projects on GitHub had ratings > 2000 stars
(representing the app being liked by 2,000 developers). These
result indicate a gap in users’ and developers’ perception of
the quality of an app.

Observation.1b: Apps for developers or projects that had
large teams were popular on both the App Store and GitHub
For example, three apps - CodeHub, Dash, and Kodi Remote-
had ratings > 4 on App Store and > 5,000 on GitHub (refer
Figure 2). CodeHub [22] is the best way to browse and
maintain GitHub repositories, and Dash [23] allows instant
offline access to 200+ API documentations. Both these de-
veloper related apps are designed for hand-held devices like
iPhone, iPod Touch, and iPad. In particular, Kodi is an home
theater/media center software and entertainment hub for digital
media [24] which consisted of a large team of 623 contributors,
211 issue reports, and 52,228 commits. These observations
align with past research that suggest that developers create
better software systems when they understand the customers’
requirements and work in large teams [25], [26].

Observation.1c: General purpose apps were not popular
with developers, and user preferences for them depended
on the apps’ category For example, seven apps with ratings
> 4 on App Store and < 10 on GitHub were found: Spin
Zone (game), Monotone Delay (audio), Northern Califor-
nia Cherry Blossom Festival (official), Conjugar (education),
Phone Battery (Apple Watch), Be my eyes (communication)
and SnowHaze (game). On analyzing these seven apps, one
project (SnowHaze) had 2 open_issues; only one project
(Be my eyes) had 7 contributors and the rest had just one.
Analyzing user reviews by category, users who rated high for
apps in the entertainment category (games, audio) mentioned
they appreciated if the game was fun and addicting; where
as in education and official categories, users mentioned they
wanted apps that were well organized, had clean User Inter-
faces, and were more efficient. Be my eyes, was a special
app, that was highly popular with users for supporting the
visually impaired community. Users left positive feedback
for its contribution to help both blind people and society at
large. Hence, these results verify the differences in users’ and
developers’ perception of a good app.

B. App Reviews vs. Issue Reports

Motivation. Based on the results of RQ1, we wanted to
understand whether the users’ reviews/feedback on the App
Store and developers’ reported issues on GitHub are similar.
We utilized user reviews/feedback on the App Store and Issue
reports from GitHub. Recent empirical studies suggest that
App Store reviews can be effectively utilized by analysts and
designers for collecting information related to user require-
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ments, bug reports, feature requests, and documentation of
user experiences with specific app features [27], [28]. On
the other hand, issue reports on GitHub contains information
regarding bugs, enhancements, or other requests by developers.
Based on findings from a survey by Al-Subaihin et al. [29],
51% of app developers performed perfective maintenance
based on feedback from the app reviews. Hence, we expected
app reviews to inform about possible bugs and enhancement
requests. We formulated RQ2: Do issue reports reflect the
opinion of users of the App Store?

Approach. In order to address this question, we analyzed
the contents of the app reviews from the App Store and the
issue reports from GitHub for each app/project. The following
techniques were used:

Bag of Words: The analysis was done using a Bag of Words
(BoW) representation of the contents of feedback from the
users of both platforms (i.e. users on the App Store and
developers on GitHub). We used the preprocessed data as de-



tailed in Section II to create two corpora for each app/project:
the first corpus consisted of all the app reviews for a given
app whereas the second corpus consisted of all the issue
reports of the corresponding project. Then, we used a BoW
representation for each corpus (sets A and B, respectively)
to determine whether A and B are similar or not. We applied
two similarity functions, the Jaccard coefficient (Eq. 1) and the
cosine similarity (Eq. 2). The former measures the fraction of
words that the two sets have in common, whereas the later
measures the similarity between the two sets but taking the
word count into account. It should be noted that the cosine
similarity requires to convert the sets of words A and B into
two document vectors @ and b, respectively.
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In addition, we calculated the percentage of inclusion (/R C
AR) (eq. 3) to measure how many similar words were in both
the issue reports (I R) and the app reviews (AR).

|[ARNIR
IR

Sentiment Analysis: The sentiment analysis was done by
classifying each corpus as positive or negative depending on
the number of positive and negative words. To do this, we
used the Syuzhet package’ available in R to calculate the
number of positive (Pos) and negative (/Neg) coded sentiment
words and the number of all other words (O) on each corpus,
separately. Then, we determined the overall sentiment (.S) of
the corpus by its relative proportional difference (Equation
4) [30]. As a result, the value of S is in the range [—1,1],
where negative values refer to an overall negative sentiment,
and positive values to an overall positive sentiment. Using this
equation, we compared sentiments of the contents in issue
reports Syr and app reviews Syp.

_ Pos— Neg
~ Pos+ Neg

3)

TAR IR =

“)

Findings. From a list of 808 apps, we were able to
collect 22,671 app reviews from 161 apps and 19,605 issue
reports from 493 projects. We found 125 apps/projects with
both app reviews and issue reports. On analyzing these 125
apps/projects, we found:

Observation.2a: Few app reviews contained the same
words in the issue reports. The percentage of inclusion was
lower than 20% for most of the apps. Only 15 out of 125
apps (12%) had more than the 20% of the words of the issue
reports included in the app reviews (refer Figure 4). This was
also supported by the low cosine similarity and Jaccard index
values: 21 out of 125 (16.80%) apps had more than 0.5 of
cosine similarity and Jaccard index values.

Zhttps://cran.r-project.org/package=syuzhet

Out of those 21 apps, 5 apps had Jaccard index values
>0.7 and app store ratings >4. We found only one app
with Jaccard coefficient >0.7 and ratings of 2.69 on the App
Store. This app was "MyHeartCounts” (Health), a research kit.
Inspecting the app reviews, we found that recent users reported
problems mostly related to inaccurate results and login issues.
This might indicate that developers may not be aware of the
contents of the user reviews, which may impact the quality of
the apps and lead to lower ratings [27], [28].

These results aligns with RQ1 that user and developers have
different perspectives and priorities.

Observation.2b:The sentiment values of users and de-
velopers for an app/project did not correlate. Figure 5
(right) shows the relationship between the relative proportional
difference of sentiment of app reviews (S 4 ) and issue reports
(Sts). There is no significant correlation between Ssp and
Srs (r =0.139,p = 0.123). Figure 5 shows the results from
the sentiment analysis. These results suggests that developers’
and users’ sentiments values were different.

Observation.2c: Sentiments between app reviews and
issue reports were in contrast. On further analysis of the
sentiments of the app reviews and issue reports, we found
6 apps that had negative sentiment S4p < 0 or S;jg < 0
but had opposite values of Sar and S;g. There were three
apps with Spp < —0.3 and S;s > 0.4, and other three
apps have Sir > 0.4 but Srs < 0. For instance, the
app “Battle for Wesnoth” (Game) showed opposite sentiment
values in the content of the issue reports and app reviews
(Srs = —0.333;Sarg = 0.524). The word cloud of app
reviews depicted in Figure 6 shows that users on app store
liked the app, since the most frequent words were “great”,
“love”, and “good”. On the other hand, Figure 7 there were
frequent negative words like “missing” and “wrong” in the
issue reports.

Observation.2d: Negative user reviews may contain rich
bug and enhancement information. On further analysis, we
found 3 apps - Artsy Folio (Media), Wheelmap (Location),
and Helio Workstation (Media) - that scored less than 2 stars.
The Wheelmap issue report was not written in English. For
Helio workstation, the users mentioned in the reviews that the
app was difficult to use; this matched with issue reports, which
asked for more features and tips. All users rated Artsy Folio
as 1 and mentioned that the app was useless to them, as it
had a bad explanation for the targeted users. These results
may suggest that negative ratings may help in finding bug and
enhancement labels for projects.

C. Software Quality vs. App Success

Motivation. As noted before, issue reports are often labelled
by different categories such as bug, enhancement, and ques-
tion, among others. These labels are maintained and verified
by the community and can be used as indicators of the quality
of the software. Thus, we quantified the number of bugs
and enhancements reported by the developers. We wanted to
understand if there was a relationship between the quality
of the projects and their popularity. Hence, we formulated
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RQ3: What is the relationship between the software quality
and the popularity of the apps? Previous studies have shown
that there is no correlation between the quality of the source
code of mobile applications and its success [31]. Other studies
have pointed out that the number of bugs impacts users’
decisions about uninstalling the app. [32], [33]. The purpose
of this question is to determine whether indicators of the
software quality of the app such as the number of bugs and
enhancements reported on GitHub impact on the popularity of
the app.

Approach. We collected issue reports from GitHub and
identified common labels for all the projects (i.e. bugs and
enhancements). These labels were used to count the number
of reported bugs and enhancements on each app/project. In
order to determine their relationship with the ratings on the
App Store and GitHub, we analyzed their distributions and
the Spearman correlation coefficient values. We also reported
outliers to complement the analysis. In these cases, we con-
sidered high-rated apps as those with more than 4 stars on the
App Store; acceptable apps as those between 4 and 2 stars,
and low-rated apps with a rating lower than 2 stars.

Findings. We found that:

Observation.3a: Popular apps/projects on GitHub may
have more bugs and enhancements, giving developers op-
portunities to improve their skills. We found marginally
significant correlation between the stars on GitHub vs number
of bugs (r = .254;p = .008;n = 107) vs enhancements
(r = .234;p = .007;n = 134). (Figure 8 upper-left): there
were three apps with a high number of bugs (more than 50
bugs) that have also a high number of ratings (more than 100)
on GitHub. On GitHub (Figure 8 upper-right), the ratings were
diverse ranging from (1 to 10* stars) in apps that have a low
number of enhancements (less than 20 enhancements).

Figure 9 shows apps with high ratings on GitHub (more than
10?), often have several bugs and enhancements. For the rest of
the apps, the number of GitHub ratings increased as more bugs
and enhancements were reported. We conjecture that more
popular apps on GitHub may have more developers involved;
mobile software development and testing is challenging be-
cause of the need to test and develop across heterogeneous
devices, operating systems, and networks [34]. Hence, more
bugs/enhancements gives developers opportunities as reflected
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Store ratings (lower). Spearman correlation coefficient value
(r), the statistical significance (p), and the number of apps
considered (n). In all the cases, zero values were discarded
from the analysis (e.g. apps with zero bugs reported or zero
number of ratings).

in ratings.

Observation.3b: Popular apps on App Store have less
number of bugs and enhancements. We found no significant
relationship between the ratings on the App Store with number
of bugs (r = .135;p = .355;n = 49) and number of
enhancements (r = .133;p = .377;n = 46). When comparing
the number of bugs and the rating found in the App Store
(Figure 8 lower-left), only only three apps were found with a
high number of bugs (more than 50 bugs) and an acceptable
rating on the App Store (higher than 3). A few high-rated
apps (5 apps) had several enhancements reported (more than
50 enhancements). All these consisted of small groups of team
members, except one (Evolution (developer)) that had 16 team
members.

Figure 9 shows distribution of both popularity indicators
(i.e., ratings on GitHub and App Store) and the number of
bugs. Figure 9, it is clear that the high rated apps on App
Store (more than 4.5) did not contain bugs or enhancements.
Out of 13 five stars projects, only one project, ChainReactApp
(Event), reported 1 bug and 0 enhancements; two projects,
Evolution (Developer) and Blahker (Extension), both reported
0 bugs and 2 and 7 enhancements, respectively; the remaining
10 projects had 0 enhancements and 0 bugs.

D. Team structure vs. App Success

Motivation. Studies have shown that the characteristics of
the team and the people involved in the development play

Size: number of bugs Size: number of enhancements
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Fig. 9: Distribution of the number of bugs (left side) and

enhancements (right side) with regard to the number of stars
and rating of the apps.

a critical role in the success of the project [26], [35], [36]. It
has been reported that apps are developed by small teams [37],
[38]. We wanted to investigate if team size and the interactions
among team members have an effect on the popularity of the
app. We formulated RQ4: What is the relationship between
the team structure and the popularity of the app?

In mobile software engineering, “scaling up” of a project
needs to be addressed by finding appropriate techniques to
manage complexity[34]. As teams of developers need mecha-
nisms for coordination and reporting, we believe that thorough
understanding of developers’ behaviors on GitHub will yield
new ways to increase collaboration among mobile app de-
velopers. Hence, this will help researchers and practitioners to
gain more insights needed to design better tools for supporting
struggling developers trying to create successful apps.

Approach. To understand the team structure, we first
created a team members’ network that was modeled as a
graph G(N, FE). N represents the set of all the developers
under consideration in our dataset. E denotes the set of all
the connections that are present among various developers.
Two developers are connected if they have worked on a
project together. We calculated the following three metrics to
understand the team structure of the developers:

o Number of disconnected components: It is to be noted
that our definition of edge creation assumes that if
there is a commit by any two team members for the
same file, then they have communicated with each other
and that is represented by the edges in our networks.
However, the network of a particular project might not
be fully connected as some team members may not
have communicated with each other. For example, a
backend developer may not commit in the same file
as the technical writer of a project. We captured this
disconnectivity by calculating the number of disconnected
components.

o Number of communities: Within a connected component,
it is possible that some set of team members communicate
with each other more than other sets of team members.
In a network, a community C' can be defined as a set of
nodes where C' C G, such that the nodes € C' are densely



connected with each other compared to rest of the nodes.
To detect the communities, we used implementation of
Louvain algorithm [39] using networkX library in Python.

o Modularity: First proposed by Newman and Girvan [40],
the “modularity” metric helps in understanding how
tightly knit the nodes are with each other in a network.
A developer network with high modularity has dense
connections between the nodes, indicating a closely con-
nected social community (i.e. a highly connected team
structure). In such a tightly knit community, the rate of
transmission of information is reliable and faster when
compared to a community with low modularity. Good
communication is a key factor that influences the success
of a team. [41].

The number of stars on GitHub is used as an indicator of
the success of the project from the developers’ perspective,
whereas ratings on the App Store indicate success from the
user’s perspective.

Findings.

To determine the effect size of the relationships found,
we interpret the Spearman r coefficient values by following
Cohen’s guidelines [42], [43]: small, medium, and large effect
sizes are respectively 0.1, 0.3, and 0.5. Table III shows the
Spearman correlations coefficients r for the network structure
metrics and the popularity indicators (i.e. number of stars on
GitHub and ratings on the App Store). The results are grouped
by team size; n represents the number of apps analyzed, and
p the p-value was to test for non-correlation.

We analyzed 534 out of 847 (63.05%) projects that had
teams of more than one committer. Out of those 534 projects,
we kept 482 projects with teams of less than 23 committers,
since they accounted for 90% of the data. To simplify the
analysis, we classified each app as small (S), medium (M),
and large (L) team sizes. We found 248 small-sized projects
(between 1 and 3 developers), 155 medium-size projects
(between 4 and 8 developers), and 79 large-size projects (more
than 9 developers). The number of developers for each project
size were set by analyzing the distribution of the number of
committers.

Observation.4a: The number of developers in a team
project influences the GitHub popularity, but not App Store
popularity The number of stars on GitHub showed a positive
correlation with the number of committers who participated
on the development of the app (r = 0.514;p = 0;n = 778).
The effect size of this relationship is large, and it is consistent
with previous studies [41]. This indicates that larger team sized
projects attract more visibility in the developer community
and, subsequently, attract high ratings. On the other hand,
we found no significant results (r = —0.071;p = 0.386)
indicating correlation between popularity on the App Store and
the number of committers. We can infer that the developers
have an inclination towards liking projects with large team
sizes, as, from a developer’s perspective, these teams have
more focused responsibilities and better coordination [41].

Observation.4b: An increasing number of common
projects between developers led to decreasing ratings on

TABLE III: List of Spearman correlation coefficient values r
for the network structure metrics and the popularity indicators.
Only significant results are shown. The results are grouped by
team size (S: small, M: medium, L: large, A: all sizes), n
represents the number of apps analyzed, and p the p-value to

test for non-correlation.

Size  Metric Popularity n r P

A NumOfCommiters stars 778 0.514  0.000
A Modularity stars 168 0.317  0.000
A AvgOfCommonRepositories  rating 124 -0.240  0.007
L NumOfCommunities stars 69 0.331  0.006
L NumOfCommiters stars 74 0.312  0.007
L Modularity stars 61 0.227  0.079
L AvgOfCommonRepositories  stars 69 -0.326  0.006
L AvgOfCommonRepositories — rating 25 -0.441  0.028
M Modularity rating 14 0.666  0.009
M Modularity stars 56 0.314  0.019
M NumOfCommunities stars 149 0.240  0.003
M NumOfCommiters stars 152 0.212  0.009
M AvgOfCommonRepositories  stars 148 -0.321 0.000
S NumOfCommiters stars 239 0.160 0.013
S AvgOfCommonRepositories  stars 221 -0.146  0.030
S AvgOfCommonRepositories — rating 31 -0.459 0.010

the App Store and GitHub. Regardless of the team size, the
popularity on the App Store decreases as the average number

of common repositories increases (r = —0.24;p = 0.007; n =
124), but when taking the team sizes into account, the effect
size seems to be significant for small-size (r = —0.459;p =
0.010;n = 31) and large-size teams (r = —0.441;p =

0.028;n = 25). It is worth mentioning that the small sample
of apps makes these results statistically insignificant, since,
according to Cohen [42], a sample size of 617 is required
to support a small size effect at « = .10. The popularity on
GitHub was significant for the large-size (r = —0.326;p =
0.006;n = 69), medium-size (r = —0.321;p = 0;n = 148)
and small-size (r = —0.146; p = 0.030; n = 221) teams. This
inverse correlation between common repositories can signal
high homophily among the team members on GitHub in terms
of the topics of projects they are working on. This also means
the team members have limited visibility, which transitively
attracts low ratings from the GitHub community.

Observation.dc: The popularity on GitHub of
apps/projects developed by medium and large-size teams
increases as the number of subteams within these teams
increases. We found a significant relationship between
the popularity on GitHub and the number of communities
in projects that were developed by teams of medium-
size (r = 0.24;p = 0.003;n = 149) and large-size
(r = 0.33L;p = 0.005;n = 69). When this relationship
was studied without taking team size into account, a large
effect size (r = 0.5;p = 0;n = 752) was found. However, a
small effect size was found when analyzing the relationship
between the number of communities and the popularity
on the App Store (r = —.127;p = .124;n = 147). As
mentioned before, we cannot consider these values highly
significant, as the number of apps analyzed is not big enough



[42]. It can be inferred that higher number of communities
within medium or large-size teams was an indication of
well-structured subteams or subgroups that were responsible
for the development of particular components. Further, this
indicated that those subteams were more focused and could
have lead to more successful projects [41]. In addition, having
well defined components in a software project is considered a
good practice [44], and this fact might explain the popularity
among the developers.

Observation.4d: Coordinated subteams achieved higher
ratings on the App Store and GitHub. Regardless of the team
size, the modularity values calculated from the communities
in the developers’ network showed a significant correlation of
medium effect size with the number of stars (r = 0.317;p =
0;n = 168). In addition, a significant relationship between the
modularity values and the ratings on the App Store was also
present for medium-size teams (r = 0.666;p = 0.009;n =
14). Tightly knit project teams often attract better ratings from
the app users. Although, according to Cohen [42], a sample
size of 22 is required to support a large-sized significant test at
o = .10. Higher modularity means there is good coordination
among the team members, which can result in a high quality
app that gets highly rated by users and developers.

IV. IMPLICATIONS FOR TOOLS

Bridging the gap between the mobile app developers and
users can help in creating a more transparent mobile market
place. Our findings have implications for future software tools
for developers.

Context based categorising using app reviews and issue
reports: We can utilize both issue reports and user review
to generate a context based words/features (Observation.l1b,
Observation. I c) using topic modelling techniques to generate
features [45]. Thus, both sources of information may be
utilized in a complementary way while analyzing the feature
(Observation.2). Such tools can be utilized by developers to
elicit requirements from user reviews as they contain “require-
ments for the masses; requirements from the masses” allowing
a user participatory cyclic development model [27] (Obser-
vation.1b). However, Chen et al.[46] found that more than
60% of user reviews did not contain any useful opinions[46].
To effectively detect emerging issues, previous research has
established dictionaries for preprocessing reviews, filtering out
non-informative reviews, or classifying reviews to predefined
topics [47], [48], [6], [49]. Although, apps made for developers
were rated higher on GitHub, as developers are able to
elicit the requirements for those apps better, providing better
customers’ perspective (Observation.1b).

Category-based recommendations: Reviews and feature
requests can be influenced by the categorization of the app
(Observation.Ic). An effective categorisation may facilitate
better application discovery and more exposure to newly
emerging apps [50]. Apps reviewed based on categories led
to positive feedback. For example, for games, users expected
apps to be fun and interactive, while education or office-related
apps are expected to be well organized and efficient with

a good user interface (Observation.ic). Clustering the apps
based on the categories may be utilized by Al-Subaihin et al.
[50].

Automated bug and enhancement labels generation from
negative user reviews: Negative sentiments of user reviews
can help in generating automated bug labels and enhancement
labels for issue reports (Observation.2d). This will help in
reducing the sample set of user reviews to just reviews with
lower rating and negative reviews. For the rest of the apps,
we can see that the number of GitHub ratings increased
as more enhancements were reported (Observation.3a). The
relationship between GitHub ratings and enhancements can
be explained by the app popularity. We conjecture that more
popular apps may have more developers involved, hence,
more enhancements are reported, as these developers may
get opportunities to improve the app. The weak linear (Ob-
servation.3) relationship might be due to popularity. More
popular apps on GitHub have more reported issues (both
enhancement and bugs). The results confirmed that users prefer
apps with fewer bugs, while these same users do not trend
to report enhancements. Although, automatic identification of
sentiments from user reviews is still beyond the reach of state-
of-the-art natural language processing tools [6].

Automated notifications generation: Any feature or bug
that is resolved in issue reports can be used to generate
automated notifications for the corresponding apps on the App
Store (Observation.2a).

Socially informed collaborative system: Utilizing the
social network analysis to notify the developers regarding
the factors observed in (Observation.4) to automatically in-
cite more collaborations and coordination among mobile app
developers.

V. THREATS TO VALIDITY

Like any other empirical study there are several threats to
validity.

External validity We studied just one application distri-
bution market, the App Store, so the results can not be
generalized. Though, this choice was intentional as previous
research has found mobile apps tend to depend highly on these
platform-specific APIs [51]. In addition, the relatively small
data set of apps/projects and their open source categorization
do not represent all kinds of mobile applications, particularly
for those developed in commercial settings. Thus, further
research is needed to improve external validity.

Internal validity Our results could be influenced by the
evaluation metrics. Metrics, such as number of downloads
and user reviews [52], were not used, as the downloads do
not necessarily reflect usage, and user reviews vary widely in
quantity and quality [20]. Further, it is difficult to determine
the ratio of positive and negative feedback for specific features
via user reviews [20]. There are several ways to build the
developers’ network and measure metrics to understand team
dynamics, but we focused only on one network structure with
several structural metrics. More studies need to be conducted
using different network structures and metrics.



Conclusion validity We used a data-driven approach (Sec-
tion II) to collect the apps, which may have affected our
findings. We limited the threat by augmenting our findings
with the description of outliers and particular cases and
referring to qualitative studies that support our findings.

VI. RELATED WORK

In recent years, an increased amount of research on user-
reviews has been reported, exhibiting how they can be useful
for software engineering activities. For example, Al-Subaihin
et al. [29] have investigated, from a developers’ perspective, to
what extent app stores affect software engineering tasks. In a
survey, Martin et al. [53] have identified user-review analysis
as one of the key fields of App Store Analysis.

User-review analysis is primarily intended to provide in-
sights regarding the users’ experience and needs. For instance,
several studies have tried to classify user-reviews into groups
such as bug reports and feature requests [54], [55], [56],
[57] whereas others have tried to automatically summarize
the app reviews [56]. The performance of different machine
learning algorithms for text classification has been studied.
For instance, Faiz et al. [54] compared the performance of
classifiers based on the Bag-of-Words approach with more
advanced models based on Convolutional Neural Networks
(CNN).

Previous studies have also explored the relationships be-
tween user-reviews and the App Store’s ecosystem. For ex-
ample, several authors have studied how user-reviews are
related to the source code of the application. Based on the
issues described in the user-review, Ciurumelea et al.[58]
recommends the source code files that should be modified to
address the issue. Palomba et al. [59] propose a solution for
tracing informative crowd reviews into source code changes,
and McDonnell et al. [60] studied the API updates of different
apps using source code from GitHub. Syer et al. [51] studied
the different code practices between app stores.

Many studies are focused on explaining the reasons why an
app might be rated higher or more frequently downloaded.
Zhong and Michahelles [61] analyzed the number of app
downloads and ratings from Google Play. They found that a
small number of popular apps have the majority of app down-
loads. Petsas et al. [62] also found that popularity follows a
power-law distribution against app price, for paid apps. Corral
and Fronza [31] studied open source apps that are available on
the Google Play store. They analyzed the relationship between
source code quality metrics and the number of downloads,
number of reviewers, and average rating. As a result, the
authors did not find a correlation between source code quality
and app ratings.

The effects of network structure on performance has been
widely studied in general [63], [64], [26], [35]. In a well
connected network, it has been observed that i) communication
is much better among the team members [05], ii) there is high
efficacy [60], iii) the goal is very clear [67], iv) performance
of such teams is much better [68].

We added insights to the software engineering literature
regarding the correlation of App Store and GitHub popularity
(ratings), explored the relationship between user opinion (re-
views) on app store with issue reports on GitHub, analyzed the
relationship between the software quality and app popularity,
and investigated the impact of team structure (of developers)
and popularity on mobile apps.

VII. CONCLUSION

In this paper, we studied the effect of GitHub ratings, issue
reports, and team structure on app ratings and reviews. We
observed that there is no correlation between the ratings on
the App Store and GitHub. Furthermore, most of the apps that
were rated high on the App Store were rated low on GitHub.
The contents of the user reviews and issue reports were not
similar, implying that developers do not use user reviews as
requirements to improve their apps/projects. The apps/projects
with high number of bugs and enhancements were rated high
on GitHub but low on the App Store. Therefore, the apps
that get high attention from developers may have lower user
satisfaction. The social network analysis concluded that teams
of large size attract high ratings from developers but not from
users. Furthermore, the GitHub ratings of the apps/projects
developed by large size teams increased as the number of sub-
teams within these teams increased, and coordinated subteams
achieved higher ratings on the App Store, too. Finally, we
discussed the implications for the researchers and practitioners
to create a more transparent mobile market by developing tools
that bridge the gap between the mobile app developers and
users.
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