
Foraging among an Overabundance of Similar Variants
Sruti Srinivasa Ragavan1, Sandeep Kaur Kuttal1,2, Charles Hill1,

Anita Sarma1, David Piorkowski1, Margaret Burnett1
1Oregon State University and 2University of Tulsa

1Corvallis, OR, and 2Tulsa, OK, USA
{srinivas, hillc, anita.sarma, piorkoda, burnett}@eecs.oregonstate.edu, sandeep-kuttal@utulsa.edu

ABSTRACT
Foraging among too many variants of the same artifact can
be problematic when many of these variants are similar.
This situation, which is largely overlooked in the literature,
is commonplace in several types of creative tasks, one of
which is exploratory programming. In this paper, we inves-
tigate how novice programmers forage through similar var-
iants. Based on our results, we propose a refinement to In-
formation Foraging Theory (IFT) to include constructs
about variation foraging behavior, and propose refinements
to computational models of IFT to better account for forag-
ing among variants.

Author Keywords
Reuse, variants, Information Foraging theory.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous

INTRODUCTION
Computer-supported creative tasks—such as writing, graph-
ic design, creating presentations, and some forms of pro-
gramming—are often exploratory in nature. People often
work on such tasks in an opportunistic manner: integrating
bits and pieces from various sources, evaluating various
alternatives, etc. During this process, they also save their
intermediate steps, thereby creating several variants of the
same artifact [2, 12, 43].

When performing creative tasks, in addition to reusing bits
and pieces from a variety of sources, individuals may also
revisit earlier variants of the same source. This especially
occurs when things go wrong, they reach a dead-end, or
when they want to use features from other (earlier) variants
[2, 12, 17].

One example of such creative tasks is exploratory pro-
gramming, in which programmers experimentally blend
creating new code with reusing bits and pieces of code from
various sources, some of which may be earlier variants.

Both novice and expert programmers engage in such ex-
ploratory programming [17].

In this paper, we focus on how programmers reuse variants
in exploratory programming [1, 27]. Reuse in programming
is generally difficult [14], and becomes even more difficult
in the context of reusing earlier variants. This is because
temporally close variants of the same code can be very sim-
ilar, requiring much cognitive effort to choose which vari-
ant to reuse.

This cognitive effort is especially high in programmers with
little experience in systematic software reuse [29]—such as
novice programmers. Novices do tend to engage in explora-
tory programming with numerous variants in the form of
alternatives they’re trying. These factors can inhibit novic-
es’ explorations during programming [45]. Given these
challenges, in this paper, we focus on novice programmers.

We believe that theories on information seeking behavior
can help understand how novice programmers search for
code among variants. Information Foraging Theory (IFT) is
one such theory that has explained information-seeking
behavior of people in general, and of programmers in par-
ticular [39]. IFT proposes that a person seeking information
follows the “information scent” from sources (patches) that
exist in an environment, similar to the way predatory ani-
mals in the wild follow the scent to their prey [38]. Models
based on the theory have accurately predicted the links that
people follow as they navigate through web sites and soft-
ware artifacts [24, 32, 38].

However, we posit that IFT is underexplored in the space of
exploratory programming. Specifically, IFT has not yet
dealt with foraging in the presence of variants over time—
where multiple artifacts have close similarities, but also
some differences. We propose a refinement of IFT as a the-
ory of variation foraging, modified to account for how peo-
ple “forage” through variants. Abstracting how people
search through variants via theory can provide a foundation
that can help the design of environments for creative tasks,
such as programming.

In this paper, we take the first step towards a theory of vari-
ation foraging through a qualitative, empirical study inves-
tigating how novice programmers find and evaluate vari-
ants. We structured our study around the following research
questions:

RQ1: What are the types of information that help novice

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Ab-
stracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI'16, May 07-12, 2016, San Jose, CA, USA
© 2016 ACM. ISBN 978-1-4503-3362-7/16/05 $15.00
DOI: http://dx.doi.org/10.1145/2858036.2858469

End-User Programming #chi4good, CHI 2016, San Jose, CA, USA

3509

programmers identify variants that can be reused?

RQ1a (Between-variant foraging): How do they forage
between variants of an artifact to find and evaluate a po-
tential variant?

RQ1b (Within-variant foraging): How do they forage
within a specific variant to find and evaluate a potential
patch?

RQ2: How do novice programmers integrate parts of the
program across variants?

BACKGROUND AND RELATED WORK

Variations

Background
To understand how novice programmers forage through
variants, we first define program variants. From a given
starting point, a program (which may be empty) can be
modified into other programs through the addition, remov-
al, or other modification of code. Informally, we use the
term variation with respect to software when multiple relat-
ed implementations exist, either serially or in parallel. We
use the word variant to more specifically refer to a syntacti-
cally valid program that occurs together with similar, relat-
ed programs in a group. For example, if a user edits an ap-
plication to use a menu instead of buttons, this results in a
new variant of the application.

Related Work
Research has explored providing variation support in non-
programming domains, such as graphic design, documents
and personal information management. Several tools sup-
port variations in graphics and interface design by allowing
users to create multiple options, and providing ways to ma-
nipulate and compare them [12, 13, 43, 44]. For example,
Kumar et al. [18] present Bricolage, which helps web inter-
face designers transfer the style and layout of one web page
to another. Mechanisms to automatically support variations
have also been proposed for personal information manage-
ment. Karlson et al. [16] introduce the concept of copy
aware computing ecosystems that track user edits in a com-
puting environment. They show that such personal infor-
mation management systems can help users keep track of
changes and semantics behind their copy operations.

In professional software engineering, product lines [6] refer
to a family of customizable software products created
through a rigorous configuration process. Research on ver-
sion control systems, in both academia and industry, has
focused on supporting and managing variations to pro-
grams. There also exists research on providing variation
support to end-user programmers [19, 21].

Our work differs from the above work by studying how
novice programmers navigate, find, understand, and reuse
code between different variations of the same set of pro-
grams, when performing exploratory programming.

Information Foraging Theory

Background
We use information foraging theory to inform our under-
standing of how and where novice programmers forage
when reusing program variants. Information foraging theo-
ry (IFT), developed by Pirolli and Card [39] has been used
to understand how humans search for information, and is
based on optimal foraging theory.

Optimal foraging theory, rooted in the biological sciences,
is a theory of how animals hunt for food. Pirolli and Card
found similarities between users’ information search pat-
terns and animals’ food foraging strategies, and used these
similarities to develop IFT. There are several constructs in
IFT that relate to optimal foraging theory: humans are
predators who search for their prey, which is information.
To find their prey, the predators look through various in-
formation sources called patches, such as a file explorer
window, source code file, or an output window – see Figure
1 parts: A, B, C, respectively. Patches contain information
features. Information features are elements of the patch,
such as folder names or variable names (Figure 1 parts: D,
E), which a predator can process to gain knowledge.

In each patch, predators make one of three choices: (1) to
forage for information within the patch, (2) to forage to a
new patch or (3) to engage in enrichment by modifying
their environment. These choices are informed by the pred-
ator’s information scent, gathered from cues (signposts) in
the environment, such as labels on links. Thus, the scent of
a cue is the predator’s assessment of the value and cost of
information obtained by following a link associated with
that cue. The network of patches connected by links is
called the topology.

Related Work
Information foraging theory was introduced by Pirolli and
colleagues to explain people’s foraging behavior in large
document collections and web pages [3, 4, 11, 34, 35, 36,
37]. To assess the theory empirically, Pirolli and his col-
leagues built several computational models. For example,

Figure 1: The cloud9 Interactive Development Environ-
ment. A, B, C are Patches; D, E are information features

(see text).

End-User Programming #chi4good, CHI 2016, San Jose, CA, USA

3510

Fu and Pirolli built a cognitive model called SNIF-ACT
[35] that modeled the links on a page and computed scent to
predict users’ foraging and backtracking. Chi et al. built
another model called WUFIS [5] that built a graph of all
pages and links on a website to predict foraging activity and
identify the least accessible pages.

IFT has also been applied to software engineering, in areas
like program maintenance, debugging, and requirements
[10, 22, 23, 25, 26, 28]. For example, Lawrance et al. de-
veloped a model called PFIS [24] to predict programmer
navigation during maintenance tasks, and then a reactive
version, PFIS2, to account for evolving foraging goals [22,
23, 26]. Piorkowski et al. used IFT as a lens to understand
programmers’ foraging goals and strategies during debug-
ging [30] and introduced PFIS3 [32] and a PFIS-based tool
that recommends the next navigation step a programmer
should take [31].

Kuttal et al. applied IFT to understand end-user foraging
behavior when debugging mashups [20], thereby refining
understanding of end users’ debugging behaviors. They also
categorized different types of cues and strategies that users
could use when debugging mashups.

All of these IFT works have focused on foraging in only
one variant of an artifact (often the most recent one [26],
even in reuse situations [10]). In contrast, this paper consid-
ers foraging in multiple variants of the same artifact that are
all available at once. One important foraging impact of
multiple variants is that these variants may be very similar.

METHODOLOGY
We conducted a think-aloud study to investigate how our
target population would forage in an information space con-
taining a large number of program variants.

We used Hextris [8], a web-based puzzle game inspired by
Tetris, as our test environment. We obtained the game’s
source from a public GitHub repository [9]. Hextris ful-
filled our criterion of containing a large number of variants
(over 700 commits) that the participants could potentially
use in order to complete their tasks.

We observed participants while they performed tasks. We
used screen-capture software to capture and record their
actions on screen, and a webcam to capture video and audio
of the participants directly.

Task Context
Participants were presented with a scenario in which a
small non-profit company hosted the Hextris game on their
website. In this scenario, volunteer programmers helped the
company improve Hextris over its lifecycle and visitors to
the site suggested some changes to the game. We asked
participants to implement these changes.

Tasks
The first task was to move the game’s score indicator from
the center of the hexagon (see Figure 2) to a location above
the hexagon like it had been in earlier variants of the game

(see Figure 3). We used the phrase “like it was before”
when communicating this to the participants, both to phrase
the statement as a comment from a site visitor and to avoid
explicitly mentioning that a solution existed in an earlier
variant. The second task was to return the game’s bonus
score multiplier indicator (see Figure 2) to the location
above the hexagon and put it in parentheses, “like it was
before” (see Figure 3). The third task was to change the text
color of the score and multiplier to black so it could be seen
when placed above the hexagon. Full task descriptions are
available on our supplementary website [42].

Several earlier variants of the game had the score and the
multiplier above the hexagon; therefore, multiple solutions
to the tasks were possible. Some of these earlier variants
had score calculation logic similar to the current one while
others had an entirely different logic. We asked participants
to preserve the current score calculation logic.

Figure 2: Participants were asked to make the following
changes to the latest variant of the game: i) move the

score (boxed) above the hexagon, ii) move the bonus mul-
tiplier (circled) above the hexagon and iii) change the

color of the score and multiplier to black so it could be
seen when placed above the hexagon.

Figure 3: In some earlier variants of the game, the score
indicator and bonus score multiplier appeared above the

hexagon. This image was not provided to participants.

End-User Programming #chi4good, CHI 2016, San Jose, CA, USA

3511

Participants
We were interested in how programmers navigate through
variants during exploratory programming. Since novice
programmers have been known to engage in exploratory
programming [1], we recruited Computer Science students
from our university. All participants had some experience
with programming, but were relatively new to JavaScript
programming (less than two years). There was one outlier
who indicated that he had 6 years of JavaScript experience,
but he mentioned that he’d only occasionally programmed
with JavaScript. Participant ages ranged between 18 and 29.
Table 1 shows the general demographics of the participants.

Study Design
The participants first filled out a background questionnaire,
and then a researcher instructed them in the think-aloud
method. Participants were then given a short tutorial on
how to use Cloud9 [7], a web-based JavaScript IDE. The
participants who lacked JavaScript or web development
experience were also given a 15-minute tutorial on the ba-
sics of HTML, CSS, and JavaScript.

After the initial instructions, participants spent 50 minutes
working on the three programming tasks, talking aloud as
they worked. Throughout the session, we collected audio of
what the participant said, video of the participant while
talking aloud, and screen-capture video. Following a short
break, we conducted a semi-structured retrospective inter-
view with each participant by playing back all of the
screen-capture video. After each foraging decision we ob-
served, we stopped the video and asked the participant
questions about their foraging decision. Interview questions
were inspired by work by Piorkowski et al. regarding IFT in
debugging [33], and are detailed in Figure 4.

Presentation of Variations
Over 700 program variants were available to the partici-
pant. We labeled each variant by the timestamp of the
commit. We also included a file called changelog.txt within

each variant folder that contained the GitHub commit mes-
sage and other information (e.g., commit ID, author name).
Our participants had different levels of experience with
GitHub. To control for this experience level, we presented
variants in the Cloud9 environment, which none of our par-
ticipants had used. Figure 5 shows how variants were dis-
played in the explorer view in Cloud9.

Limitations
Every study has limitations. In our study, the experimental
setup and the presentation of variations as separate folders
were different from full-fledged version control systems
that professional programmers use. Similarly, the tasks and
the Github repository used may not be representative. Pro-
grammers may also have different motivations for foraging
than those used in our study. Limitations like these can only
be addressed through further empirical studies.

Qualitative Analysis
We qualitatively coded the data as follows: We used the
baseline code set inspired by previous research [21, 33, 41].
We also added new codes (shaded items in Table 2) to rec-
ord phenomena that we observed specific to our variation-
foraging questions.

We segmented the transcripts of participants’ think-aloud
videos into 30-second segments and coded them, allowing
multiple codes per segment. Two researchers independently
coded 20% of the transcripts. We then calculated inter-rater
reliability using the Jaccard measure [15], resulting in a rate
of agreement of 85% on 20% of the data. Given this high
rate of inter-rater reliability, the two researchers split up the
coding of the remaining code set.

Each time a participant entered a new variant:Explain: You chose to [do/go to] (Variant name) Ask: What did you expect to (see/find) when you went to _____? What did you see as your other possible choices? Why did you choose to navigate to _____ as opposed to (other choices)?
Figure 4: During the retrospective interview, we played
back a video of the participant’s programming task and

asked these questions after every foraging decision.

Figure 5: Variants were presented in chronological order
in the IDE.

Partici-
pant
label Gender Level Age

Experience (years)

Java-
script

Progra-
mming

Web
develop-

ment
P01 Male Sophomore 20s 1 1.5 Yes
P02 Male Freshman Teens 6* 6 Yes
P03 Female Junior 20s 0 9 No
P04 Male Sophomore 20s 2 1 Yes
P05 Male Freshman Teens 0 3 No
P06 Male Sophomore Teens 0 5 Yes
P07 Male Junior 20s 2 2 Yes
P08 Male Junior 20s 1 5 Yes

Table 1. General demographics.
(*Participant P02 occasionally programmed in JavaScript)

End-User Programming #chi4good, CHI 2016, San Jose, CA, USA

3512

We coded the data according to the cue types participants
used, the type of operations they performed, and their navi-
gation behavior (see Table 2).

RESULTS
Rosson & Carroll [40] studied how Smalltalk programmers
find and apply code from one “usage context” (containing
reusable code) to accomplish a task in their “current con-
text” (containing the location to integrate the reusable
code). They define three stages for reuse tasks:

1) Finding a usage context,
2) Evaluating a usage context,
3) Debugging a usage context

This model was for reuse for a single variant of source
code, so we extended the model in two ways to accommo-
date multiple variants. First, we introduce a “Finding and
evaluating a current context” stage, because in our case this
stage influenced how participants found and evaluated the
usage context. Second, participants integrated changes
across variants to finish the task. Thus, we replace the de-

bugging stage with an “Integrating the variants” stage. The
modified reuse model consists of the following stages:

1) Finding and evaluating a current context,
2) Finding and evaluating a usage context,
3) Integrating the variants.

In IFT terminology, a current or usage context maps to the
patches within a variant that are relevant to the user’s ongo-
ing task (see Figure 6). Here, we term the current context as
destination variants and patches, and usage contexts as
source variants and patches. Therefore, in order to find a
context, one has to forage (find and evaluate) the right vari-

Code Description
Cue-Types

Create Time,
Update Time

Timestamp cues marking latest, first or
intermediate variants, and navigation to
corresponding variants.

Previous File,
Previous Method

Reuse of information features (file and
method names) from one variant as cues in
other variant.

Output Cues based on how output looks or running
a preview

Domain Game-related words, e.g., score, block, etc

Source Source Code-Inspired cues e.g., function
name, variable name, etc.

Error,
Correct

Cues based on error/correctness of
patch/prey

File Name,
File Type FileName-Inspired and file type cues

Document Documentation cues: change logs, readme
files, tooltips, etc.

Comment Source code comments
Search Search inside IDE or the internet

Debug, Inspect Debugger or “element inspect” feature in
browser

Operations

Edit
Edits made to source code, to verify the
prey using Output-Inspired cues, or to im-
plement the task.

Reuse Explicit reuse of source code , i.e., copy
and paste

Compare Compare two variants
Navigations

Between Variant
Navigation

Between-variant navigation was coded
along with the cues that guided these navi-
gations.

Table 2. We coded participants’ operations, navigations
and the cue-types they attended to. The highlighted items

are the new codes we added pertinent to variations foraging
that have not been reported in the IFT literature.

Figure 6: Finding and evaluating a context involves find-
ing the variant (between-variant foraging) and then the

patches within the variant (within-variant foraging).

Figure 7: Modified reuse model: Participants were pro-
vided with the destination variant (greyed out). They

interleaved finding and evaluating the prey in both be-
tween-variant (blue) and within-variant (green) foraging.

End-User Programming #chi4good, CHI 2016, San Jose, CA, USA

3513

Kuttal, Sandeep

ant, and then forage (find and evaluate) the relevant patches
inside that variant (see Figure 7).

Note that we do not intend our modified reuse model to
suggest that programmers followed any particular order. In
fact, Figure 8 shows that Participant P06 foraged for the
source variant and the source patches (usage context) before
he foraged for the destination patches (current context). In
summary, our results describe sets—not sequences—of
behaviors.

Stage 1: Finding and evaluating a current context
Foraging for the current context, or where the fix needed to
be made, involved finding the right destination variant, and
then finding the relevant destination patches in that variant.

Destination Variant: Find and Evaluate
Participants didn’t need to forage for the destination vari-
ant: it was provided for them and labeled “Current”.

Destination patch: Find and Evaluate
Finding and evaluating patches were interleaved when par-
ticipants foraged for the destination patches. In conform-
ance with prior research on IFT for debugging, participants
attended to various cues within the destination variant (e.g.,
file names, words in source code, source code comments,
Output-Inspired, etc.) [33].

When participants found a patch that might contain the
prey, they edited the code and used the resulting output to
evaluate it. For example, all participants altered the x and y
parameters in the renderText() method in order to evaluate
whether it really altered the score position. The dots inside
the destination patch foraging segments show how partici-
pants edited the destination patches to evaluate them.

Stage 2: Finding and evaluating a usage context
For Stage 2, we investigated the types of information that
participants used to identify reusable variants (RQ1), their
between-variant foraging behavior (RQ1a), and their with-
in-variant foraging behavior (RQ1b).

Source variant: Find
Participants first tried to find a variant of the game that had
the score and multiplier above the hexagon. To do so, they
foraged among several variants. We call this between-
variant foraging, similar to between-patch foraging [39].

Indeed, when foraging within any one variant (within-
variant foraging), participants performed both within-patch
and between-patch foraging. However, their between-
variant foraging was not similar to between-patch foraging;
the latter refers to navigating between patches that have
different information, e.g., between two different methods,
but the variants were more similar than different.

The only cue type available to participants while foraging
between variants was the update timestamp of the variant
(specified as the folder label). Five out of eight participants
attended to the timestamp cues by navigating to the oldest
variant of the game. Participant P04 said: “I wanted to see
what they were doing at the beginning, [to] see what they
had implemented to start off with”. Participants then navi-
gated to a variant by either directly selecting a particular
timestamp, or by using the chronological ordering to guess
how far to scroll to a potentially more valuable variant.

Participants’ timestamp-based navigation mostly followed
one or more of the following three patterns, shown in Fig-
ure 9. Note that regardless of the foraging pattern they fol-
lowed, all participants skipped over several variants since
consecutive variants were too similar.

1) Unidirectional: Four out of eight participants (P01, P02,
P03, P04) foraged in a single direction. They either foraged
from the oldest to the most recent variant or vice-versa (see
Figure 9 (a)). Participant P03 explained: “… jumping down
more … like a sorting algorithm, checking further and fur-
ther until there was a change.”

2) Bidirectional: Four out of eight participants (P03, P06,
P07, P08) changed directions while foraging between can-

Figure 8: Participants foraged the Source Variant (SV), Source Patches (SP) and Destination Patches (DP) in different orders. Note
that they used information features (shown as triangles) from one variant to forage in other variants and performed comparison

during both source-patch foraging and destination-patch foraging.

End-User Programming #chi4good, CHI 2016, San Jose, CA, USA

3514

didate source variants. Initially, they started from either the
oldest or the most recent variant, and foraged along one
direction. However, when they found that they had gone too
far in one direction, they reversed course and continued in
the other direction, as shown in Figure 9 (b).

3) Systematic narrowing: Two of the eight participants
(P02, P05) started from a variant in the middle and system-
atically narrowed down the search space using an approach
similar to a binary search. Participant P02 said: “… just
split the list in half and then … do a binary search on it.”

Besides attending to the timestamp cues, all participants
enriched the environment. Some participants kept variant
folders expanded so they could quickly identify previously-
visited locations, such as Participant P03: “…having seen
an open folder … I figured that is the one that I saw earli-
er.” Further, half of the participants collapsed variant fold-
ers that did not contain relevant prey before moving on to
the next variant.

Participants also kept track of variants by remembering
their timestamps. For example, P01 said, “So I'll just re-
member that on 2014-05-20, [it] had the right interface.”

Source variant: Evaluate
Participants went through several find-evaluate cycles while
foraging for a source variant, to evaluate whether the vari-
ants contained relevant information features. If a participant
found a variant to be relevant, they then foraged more with-
in the same variant; we call this type of foraging within-
variant foraging. Otherwise, they looked for another source
variant; we call this between-variant foraging.

Figure 7 shows how the evaluation of a variant either led to
foraging for the patches within the variant (if it was the
right variant), or finding another variant (if the variant was
not suitable). Most participants also continued to forage for

alternate source variants even after they found a suitable
variant (with score and multiplier above the hexagon). For
example, the first square above row P07 in Figure 8 shows
the first source variant he found. After briefly foraging
within that variant and finding it unsuitable, he foraged for
another variant (the second square above row P07). One
goal of participants during such foraging was to find a clos-
er match to the destination variant.

In order to evaluate whether a variant might contain the
prey that the participant was looking for, they attended to
several cue types within the variant. Table 3 shows the cue
types that participants used to evaluate variants, along with
the frequencies of their usage. When evaluating, partici-
pants often used these cues as signposts away from the
prey, inferring a negative scent from these cues and then
navigating directly away from the variant.

1) Output-Inspired: Output-Inspired cues were the most
frequently used cue types, accounting for 68.3% of all eval-
uation cues. Participants’ attention to this cue type is unsur-
prising because the task required the game to be “like it was
before”, and the easiest way to determine the appearance of
a game was by previewing it. Participants focused on the
game’s features and easily rejected variants of the game
where the score and multiplier features did not appear
above the hexagon. They also looked at the game’s correct-
ness. Most participants rejected variants of the game that
had errors or did not work. The only exception to this was
Participant P07 who continued foraging inside a “broken”
variant because he found the source code to be still useful:
“This drawing code, that's not actually running, still has
basically the same drawScoreboard”.

2) Change Log-Inspired: Each variant folder included a
change log in a file named changes.txt, as described in the
methodology. Participants frequently used these cues to
understand what changes were made in the variant. Partici-
pant P01 said: “I expected to see something along the lines
of ‘changing the position of score’”. Change Log-Inspired
cues were the second most popular cue type, accounting for
15.8% of all the cues that participants used to evaluate vari-

Figure 9: (a) Participant P01 was a unidirectional forager.
(b) Participant P06 was a bidirectional forager. (c) Partici-

pant P05 was a systematic narrowing forager. Note that
they all skipped a few variants at a time

Cue Types
Output-
Inspired

Change Log-
Inspired

Source Code-
Inspired

FileName-
Inspired

P01 29 12
P02 15 8
P03 44 3
P04 6 15 2
P05 9 2
P06 22 1
P07 12 22 3
P08 14 2

Total Occur-
rences

151
(68.3%)

35
(15.8%)

32
(14.5%)

3
(1.4%)

Table 3. Participants used some cue types more frequently
than others to evaluate variants.

End-User Programming #chi4good, CHI 2016, San Jose, CA, USA

3515

ants. However, change logs were sometimes unhelpful be-
cause they were non-descriptive (e.g. one log contained
only the text “asdf”). When one participant (P03) found the
change logs non-descriptive, she abandoned this cue type
for the rest of the session: “Their document isn't that good
for people changing things.”

3) Source Code-Inspired: The third most frequently used
cues were Source Code-Inspired (14.5%). Participants like
P07 used similarities and differences in source code as cues
to evaluate a variant: “[source code] this still looks like the
center to me”. When he saw that the source code between
two variants were similar, he perceived a negative scent,
and navigated to a different variant. Some participants read
the source-code to determine the game features in that vari-
ant, such as P03: “… looking at the lines of code and de-
termining if it had the things I needed or not.” Some partic-
ipants also perceived errors in the source code (e.g., compi-
lation errors) as a negative scent, and did not forage further
in those variants.

4) FileName-Inspired: One participant (P07) used File-
Name-Inspired cues for evaluating variants and rejected
variants where certain files were absent. He remarked about
one variant: “… at some point, [filename] did not even ex-
ist” and did not forage further within that variant.

Source patch: Find
Once participants found a source variant, they proceeded to
forage for the source patches within that variant. They
looked for the exact patches relevant to their tasks, similar
to how they foraged earlier in the destination variant. Alt-
hough the participants’ foraging goals in the two cases were
similar (e.g., find code that rendered the score), their forag-
ing behaviors were different.

Earlier, when participants foraged within the destination
variant, they did not know where relevant patches might be.
They relied on cues in the environment to forage the desti-
nation patches. However, when foraging in the source vari-
ant (which was similar to destination variant), participants
had formed expectations about where the source patches
might be located. These expectations provided a starting
point for participants’ foraging within the source variant.

More specifically, participants used information features
from the destination variant to directly navigate to appro-
priate patches in the source variant. For example, P03 found
calls to the method renderText in a file named view.js in the
destination variant. When she later foraged in the source
variant, she said, “renderText is still something I can look
for” and searched for “render” in the view.js file. Six out of
seven participants who foraged for patches in both source
and destination variants used such similarities to guide their
foraging (P1, P3-P7: the blue triangles in Figure 8).

Looking for identical patches or information features across
similar variants was an easy way for participants to navi-
gate to the patches that they thought might contain relevant
information. However, there were cases where this strategy

failed. Participants sometimes did not find the same patch-
es or information features that they expected to find be-
cause those patches had changed over time. In such cases,
participants proceeded in one of the following two ways:

1) Participants continued to rely on the similarities be-
tween the variants, hoping that other similar information
features might lead them to the right patches. For example,
when Participant P03 did not find the renderText() method
in the source variant, she said: “what are some other key
phrases I can look for... I guess go back and check for
score.” In Figure 8, row P03, the two consecutive triangles
denote how she looked for renderText and then immediate-
ly looked for score.

2) Participants changed their strategy without further reli-
ance on the similarities between the variants. They looked
for other cues within the source variant based on cues that
they had found in their earlier foraging within the destina-
tion variant. For example, Participant P03 searched
for renderText and score in the source variant, but when
these searches did not lead her to the right patches, she
started reading the source code within that variant, as
shown by the absence of triangles following the two con-
secutive triangles in row P03 of Figure 8.

Source patch: Evaluate
Participants interleaved finding the source patches with
evaluating them, mainly performing two kinds of evaluation
on the source patches.

First, some participants wanted to ensure that the behavior
of the source-code was what they expected. They made
edits to the code and checked the effect on the output, just
like they evaluated the destination patches. Two out of eight
participants performed this kind of evaluation (see the edits
during source-patch foraging in Figure 8). If participants
found that the patch they were on was not the right patch
(e.g. their edits didn’t change the location of the score),
participants undid their changes and continued foraging for
patches within the same variant.

The other kind of source-patch evaluation was geared to-
wards participants’ eventual goal of reuse: they evaluated
whether a source patch was suitable for integration with the
destination patch. In order to evaluate whether a certain
source patch was suitable for reuse, participants compared
the information features between the source and destination
patches. While similar patches led the participants to the
integration phase, differences between the source and desti-
nation patches often acted as a negative scent, causing the
participant to start over by looking for another source vari-
ant. This is because participants expected that the cost of
integrating similar patches would be lower than integrating
dissimilar patches. Participant P01 commented: “I am go-
ing to try and find any styles that apply to score … and
copy that and put it down into here”. All seven participants
who foraged for source patches within a source variant ex-
hibited this behavior.

End-User Programming #chi4good, CHI 2016, San Jose, CA, USA

3516

While participants mostly used a drill-down approach of
foraging for the variant, and then the patches within the
variant, one participant (P07) evaluated source variants by
evaluating the patches. In Figure 8, row P07’s sequence of
triangles shows how he used destination patches to evaluate
source variants. This also explains his heavy usage of
Source Code-Inspired and FileName-Inspired cues to eval-
uate variants (see Table 3).

Evolution Stories: Guiding Variation Foraging
As participants foraged between and within variants, some
built a story of how the game had evolved. When partici-
pants could not build a complete story, they created a par-
tial outline. Participants then used the evolution story to
guide their foraging.

These stories were largely based on the information features
that participants collected in the various patches that they
had already foraged. Some used Output- and Change Log-
Inspired cues to understand how the game had evolved. For
example, Participant P08, who followed Output-Inspired
cues, commented: “seems that the game had the zero in the
middle and then before that never worked. That could've
gotten broken at some point though”. Other participants
used Source Code-Inspired cues to understand how the code
had evolved over time, such as when Participant P07 exam-
ined a method across variants and said: “At some point, this
[method] was [re]factored into its own function, then it was
[re]factored back out of its own function”. We think that
this behavior is unique to foraging among variants.

More specifically, in the retrospective interview, P07 ex-
plained how he built, refined and used a story to guide his
foraging. He first used information features in the output to
build a story: “…early in development there's no score la-
bel. At some point the original score label is introduced.
And then, after that, the 2nd score label's introduced”.

As he processed more information features from the output
of more variants, he refined his story: “… after dealing with
this for a while, there might have been like no score label,
then the original score label, then no score label, and then
the second score label for a while”.

He then used his story to guide his foraging: “... that's basi-
cally why, when I hit this version that had no score label, I
just decided to start searching in a more recent direction”.

Stage 3: Integrating the variants
Once participants found and evaluated the current and us-
age context, they proceeded to the third stage of reuse, inte-
grating the variants, to complete their task. Participants
used the following strategies in integrating the changes:

1) Copy and paste: When two variants were similar, par-
ticipants attempted to copy and paste the code from the
source variant into the destination variant, and made mini-
mal modifications to match the task requirement. Only one
participant (P06) was able to find such a similar patch for
reuse, and only for one of the tasks. In other cases, when

the two variants were dissimilar, participants copied and
pasted code from the source patches into destination patch-
es, and then fixed all the dependencies and errors. Three out
of eight participants (P01, P07, P06) followed this strategy.

2) Re-implement: Two participants (P07, P03) implement-
ed the task from scratch (without reuse) when they found
source and destination variants to be dissimilar. Further,
one participant (P08) could not locate the right source vari-
ant; therefore, he directly implemented the fix only based
on the (textual) task descriptions.

These two strategies have been reported in reuse literature
as “cut-and-stanch-the-bleeding” and “analyze-then-act”
strategies, respectively [14]. How participants integrated the
code depended on the variant and the patches that they had
foraged, and the perceived cost of integrating the changes.

DISCUSSION

Implications for Theory and its Models
Traditionally, IFT models work with collections of dissimi-
lar but connected patches. For example, IFT models have
predicted foraging behavior in web sites (groups of dissimi-
lar but linked pages) [39] and in software source code
(groups of dissimilar files that refer to each other) [24, 28].

In contrast, modeling foraging through variants must pre-
dict how people will forage through collections of similar,
but disconnected patches. Our results indicated that users
navigated across these disconnected collections using two
main strategies. First, they focused on the differences be-
tween patches across similar variants (6 out of 8 partici-
pants). Second, they foraged across variants by following
their evolution history (5 out of 8 participants). In particu-
lar, these participants generated temporal stories about how
the program (and its variants) evolved over time. These
stories guided their navigations and were fundamental to
some participants’ foraging.

These two foraging behaviors are interesting, because they
may be uniquely important to variation foraging; IFT mod-
els in more traditional settings do not normally come across
so much similarity. Therefore, IFT computational models in
variation settings may need to be extended to accurately
describe such behaviors.

Four implications for IFT go beyond computational models,
and directly impact the theory itself. First, there is no con-
struct in IFT that could be instantiated as a story: stories are
not cues, not patches, not prey, and so on. Thus, an open
research question is whether new IFT construct(s) are need-
ed to capture this phenomenon.

Recent IFT research [33] has begun to explore the concept
of cue types based on their provenance—a perspective on
cues beyond their content. Our results suggest our second
implication for theory: another new perspective, that of
cues that signal differences versus those that signal similari-
ties. In our results, 7 out of 8 participant verbalizations re-
ferred to looking for differences between variants. On the

End-User Programming #chi4good, CHI 2016, San Jose, CA, USA

3517

other hand, cues that highlighted similarities between vari-
ants were also important: to ease integration of code be-
tween variants, participants compared the code structure to
try to find the source variant that was the most similar to the
destination variant.

Recognizing the differences and similarities between vari-
ants inherently implies that the forager is doing some kind
of comparison, leading to our third implication for theory.
Current IFT models treat foraging-within, foraging-
between, and enrichment as operations that humans per-
form; however, there is no comparison operation.

Finally, a frequent cost-benefit analysis that participants
performed while evaluating source patches seemed unique
to variation foraging. Participants looked for source patches
that were similar to the destination patch to minimize the
cost of integration. This suggests that IFT models could
benefit by including such analysis.

What makes a good variant?
Currently, the creation of variants in the environment is
subjective; a programmer may or may not decide to save a
particular variant of their code. The intermediate variants
are important when programmers adopt exploratory pro-
gramming, yet saving every single change would create too
many variants for a person to use effectively. Understand-
ing the points at which intermediate variants have the most
significance can improve tool support for exploratory tasks.

Implications for Tools
Our results, although formative, have initial implications
for tool design.

Organizing variants
Recall that participants’ goals centered on understanding
and comparing variants along different dimensions (e.g.
game appearance, source code content, and chronology).
The environment had limited support for these types of
comparisons; participants managed to compare variants by
opening only two files at a time, side-by-side, which was
inefficient in the presence of hundreds of variants. Tools
could support such comparisons between variants by high-
lighting similarities and differences along different dimen-
sions. They could also support grouping and filtering vari-
ants along different dimensions. Finally, since variants were
not linked, participants had to forage between variants by
navigating out of a variant and into another by using the
folder structure. Tools could ease navigation by linking
variants through some of these dimensions.

Supporting effective navigation among variants
Tools to support variation exploration can improve user
navigation. Such tools could include features such as:

1) Identify and highlight cues that reveal what makes var-
iants different from or similar to one another.

2) Leverage automated techniques that analyze and
summarize program changes to create descriptive
change logs that highlight evolution history.

3) Extract major events and milestones in program evolu-

tion, and present a timeline of major landmarks in the
history of the software.

CONCLUSION
This study is the first to investigate how novice program-
mers forage through past and present variants. Analyzing
their foraging behavior through an information foraging
theory lens produced the following insights:

RQ1 (types of information used): Our results revealed
new cue types signaling differences (e.g., update dates)
and similarities (e.g., previous names) among variants;
these cue types were extensively used by participants.
We also found that participants reused cues to reduce
the cost of searching for cues in the environment—a
new finding that can inform tool development.

RQ1a (foraging between variants): Participants created
stories about the evolution of the program, and then
used these stories to guide their subsequent foraging be-
tween variants. Their foraging behavior fell into three
distinct navigation patterns: unidirectional, bidirectional,
and divide and conquer.

RQ1b (foraging within variants): Participants exploited
structural similarities between source and destination
variants’ code structures to enhance their within-variant
foraging in the source variant, by spotting patches with-
in the source variant that would be easy to integrate into
the destination. Differences between the source and des-
tination patches acted as a negative scent, leading partic-
ipants to abandon their within-variant foraging and re-
turn to between-variant foraging.

RQ2 (integration): Participants satisficed when integrat-
ing code between variants: they tried to find an appro-
priate patch that was similar to the destination patch, but
if the cost of finding such a patch was too great, they
modified some patch that seemed “good enough” or re-
implemented the functionality from scratch.

Most important, this paper presents the first empirical evi-
dence that IFT has gaps when applied as a theory of varia-
tion foraging. For example, IFT does not account for the
temporal aspect of how participants developed stories, or
how participants exploited structural similarities between
different variants to locate patches of interest, or the signifi-
cance to the participants of finding differences among simi-
lar variants. We believe that extending IFT to incorporate
variation-specific constructs will enable us to extend and
benefit from a theoretical foundation of how people forage
in the presence of variants.

ACKNOWLEDGMENTS
We thank our participants for their help. This work was
supported in part by NSF 1302113, 1314384, 1253786,
1314365, and 1439957 and David Piorkowski’s IBM PhD
fellowship.

End-User Programming #chi4good, CHI 2016, San Jose, CA, USA

3518

REFERENCES
1. Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira

Dontcheva, and Scott R. Klemmer. 2009. Two studies
of opportunistic programming: interleaving web forag-
ing, learning, and writing code. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI '09), 1589-
1598. http://doi.acm.org/10.1145/1518701.1518944

2. Margaret Burnett and Brad Myers. Future of End-User
Software Engineering: Beyond the Silos. 2014. In In-
ternational Conference on Software Engineering: Fu-
ture of Software Engineering track (ICSE Companion
Proceedings '14), 201-
211. http://dx.doi.org/10.1145/2593882.2593896

3. Ed H. Chi, Peter Pirolli, and James Pitkow. The scent of
a site: A system for analyzing and predicting infor-
mation scent, usage, and usability of a web site. In pro-
ceedings of the SIGCHI conference on Human Factors
in Computing Systems. ACM,
2000. http://dx.doi.org/10.1145/332040.332423

4. Ed H. Chi, Peter Pirolli, Kim Chen, and James Pitkow.
Using information scent to model user information
needs and actions and the Web. In Proceedings of the
SIGCHI conference on Human factors in computing
systems, pp. 490-497. ACM,
2001. http://dx.doi.org/10.1145/365024.365325

5. Ed H. Chi, Adam Rosien, Gesara Supattanasiri, Amanda
Williams, Christiaan Royer, Celia Chow, Erica Robles,
Brinda Dalal, Julie Chen, and Steve Cousins. The
Bloodhound project: Automating discovery of web us-
ability issues using the InfoScent simulator.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '03). ACM, New
York, NY, USA, 505-
512. http://dx.doi.org/10.1145/642611.642699

6. Paul Clements and Linda Northrop. 2001. Software
product lines: Patterns and practice. Addison-Wesley
Professional.

7. Cloud9. 2015. Cloud9 – your development environment,
in the cloud. Retrieved September 23, 2015
from https://c9.io/

8. Logan Engstrom, Garrett Finucane. 2015. Hextris. Re-
trieved September 23, 2015
from https://hextris.github.io/hextris/

9. Logan Engstrom, Garrett Finucane, Noah Moroze, Mi-
chael Yang. 2015. Hextris. Retrieved September 23,
2015 from https://github.com/Hextris/hextris

10. Scott D. Fleming, Chris Scaffidi, David Piorkowski,
Margaret Burnett, Rachel Bellamy, Joseph Lawrance,
and Irwin Kwan. 2013. An information foraging theory
perspective on tools for debugging, refactoring, and re-
use tasks. ACM Transactions on Software Engineering
and Methodology 22, 2:
14 http://doi.acm.org/10.1145/2430545.2430551

11. Wai-Tat Fu, and Peter Pirolli. SNIF-ACT: A cognitive
model of user navigation on the World Wide
Web. Human–Computer Interaction 22.4 (2007): 355-
412.

12. Björn Hartmann, Sean Follmer, Antonio Ricciardi,
Timothy Cardenas, and Scott R. Klemmer. 2010.
D.note: revising user interfaces through change track-
ing, annotations, and alternatives. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI '10), 493-
502. http://doi.acm.org/10.1145/1753326.1753400

13. Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo
Yang, and Scott R. Klemmer. 2008. Design as explora-
tion: creating interface alternatives through parallel au-
thoring and runtime tuning. In Proceedings of the 21st
annual ACM symposium on User interface software
and technology (UIST '08), 91-
100. http://doi.acm.org/10.1145/1449715.1449732

14. Reid Holmes and Robert J. Walker. 2013. Systematiz-
ing pragmatic software reuse. ACM Transactions on
Software Engineering and Methodology 10, 2:
44. http://dx.doi.org/10.1145/2377656.2377657

15. Paul Jaccard. 1901. Étude comparative de la distribution
florale dans une portion des Alpes et des Jura. Bulletin
del la Société Vaudoise des Sciences Naturelles. 37:
547–579.

16. Amy K. Karlson, Greg Smith, and Bongshin Lee. 2011.
Which version is this?: improving the desktop experi-
ence within a copy-aware computing ecosystem.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '11), 2669-
2678. http://doi.acm.org/10.1145/1978942.1979334

17. Scott R. Klemmer, Michael Thomsen, Ethan Phelps-
Goodman, Robert Lee, and James A. Landay. 2002.
Where do web sites come from?: capturing and inter-
acting with design history. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI '02), 1-
8. http://doi.acm.org/10.1145/503376.503378

18. Ranjitha Kumar, Jerry O. Talton, Salman Ahmad, and
Scott R. Klemmer. 2011. Bricolage: example-based re-
targeting for web design. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI '11), 2197-
2206. http://doi.acm.org/10.1145/1978942.1979262

19. Sandeep K. Kuttal. 2014a. Leveraging variation man-
agement to enhance end users' programming experi-
ence. ETD collection for University of Nebraska - Lin-
coln.

20. Sandeep K Kuttal, A. Sarma, and Gregg Rothermel.
2013. Predator behavior in the wild web world of bugs:
an information foraging theory perspective. In Proceed-
ings of the IEEE Symposium on Visual Languages and

End-User Programming #chi4good, CHI 2016, San Jose, CA, USA

3519

Human-Centric Computing (VL/HCC '13), 59-
66. http://dx.doi.org/10.1109/VLHCC.2013.6645244

21. Sandeep K. Kuttal, Anita Sarma, and Gregg Rothermel.
2014. On the benefits of providing versioning support
for end users: an empirical study. ACM Transactions
on Software Engineering and Methodology 21, 2:
9. http://doi.acm.org/10.1145/2560016

22. Joseph Lawrance, Christopher Bogart, Margaret Bur-
nett, Rachel Bellamy, and Kyle Rector. 2009. How
people debug, revisited: an information foraging theory
perspective. In Visual Languages and Human-Centric
Computing (VL/HCC '11), 117-124.

23. Joseph Lawrance, Rachel Bellamy, and Margaret Bur-
nett. 2007. Scents in programs: does information forag-
ing theory apply to program maintenance?.In Visual
Languages and Human-Centric Computing (VL/HCC
'07), 15-22. http://dx.doi.org/10.1109/VLHCC.2007.25

24. Joseph Lawrance, Rachel Bellamy, Margaret Burnett,
and Kyle Rector. 2008. Using information scent to
model the dynamic foraging behavior of programmers
in maintenance tasks. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI '08), 1323-
1332. http://doi.acm.org/10.1145/1357054.1357261

25. Joseph Lawrance, Rachel Bellamy, Margaret Burnett,
Kyle Rector. 2008. Can information foraging pick the
fix? a field study. In Visual Languages and Human-
Centric Computing (VL/HCC '08), 15-19
http://dx.doi.org/10.1109/VLHCC.2008.4639059

26. Joseph Lawrance, Margaret Burnett, Rachel Bellamy,
Christopher Bogart, and Calvin Swart. 2010. Reactive
information foraging for evolving goals.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '10), 25-
34. http://doi.acm.org/10.1145/1753326.1753332

27. Brad A. Myers, YoungSeok Yoon, Joel Brandt. 2013.
Creativity Support in Authoring and Back-tracking. In
Proc. Workshop on Evaluation Methods for Creativity
Support Environments at CHI (CHI '13), 40-43.

28. Nan Niu, Anas Mahmoud, and Gary Bradshaw. 2011.
Information foraging as a foundation for code naviga-
tion (NIER track). In Proceedings of the 33rd Interna-
tional Conference on Software Engineering (ICSE '11),
816-819.

29. Seymour Papert and Cynthia Solomon. 1989. Twenty
things to do with a computer. In Soloway & Spohrer:
Studying the Novice Programmer (SS '89), 3-27.

30. David J. Piorkowski, Scott D. Fleming, Irwin Kwan,
Margaret M. Burnett, Christopher Scaffidi, Rachel K.E.
Bellamy, and Joshua Jordahl. 2013. The whats and
hows of programmers' foraging diets. In Proceedings of
the SIGCHI Conference on Human Factors in Compu-

ting Systems (CHI '13), 3063-
3072. http://doi.acm.org/10.1145/2470654.2466418

31. David Piorkowski, Scott Fleming, Christopher Scaffidi,
Christopher Bogart, Margaret Burnett, Bonnie John,
Rachel Bellamy, and Calvin Swart. 2012. Reactive in-
formation foraging: an empirical investigation of theo-
ry-based recommender systems for programmers.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '12), 1471-
1480. http://doi.acm.org/10.1145/2207676.2208608

32. David Piorkowski, Scott D. Fleming, Christopher Scaf-
fidi, Liza John, Christopher Bogart, Bonnie E. John,
Margaret Burnett, Rachel Bellamy. 2011. Modeling
programmer navigation: A head-to-head empirical
evaluation of predictive models. In Visual Languages
and Human-Centric Computing (VL/HCC '11), 18-22.
http://dx.doi.org/10.1109/VLHCC.2011.6070387

33. David Piorkowski, Scott D. Fleming, Christopher Scaf-
fidi, Margaret Burnett, Irwin Kwan, Austin Z. Henley,
Jamie Macbeth, Charles Hill, Amber Horvath. To Fix
or to Learn? How Production Bias Affects Developers'
Information Foraging during Debugging. In IEEE In-
ternational Conference on Software Maintenance and
Evolution (ICSME
'15). http://dx.doi.org/10.1109/ICSM.2015.7332447

34. Peter Pirolli, Stuart Card. Information foraging in in-
formation access environments. In Proceedings of the
ACM SIGCHI Conference on Human factors in com-
puting systems
(CHI’95), http://dx.doi.org/10.1145/223904.223911

35. Peter Pirolli, Wai-Tat Fu. SNIF-ACT: A model of in-
formation foraging on the World Wide Web. User
modeling 2003. Springer Berlin Heidelberg, 2003. 45-
54. http://dx.doi.org/10.1007/3-540-44963-9_8

36. Peter Pirolli. Rational analyses of information foraging
on the web. Cognitive science 29.3 (2005): 343-373.

37. Peter Pirolli, Wai-tat Fu, Ed Chi, and Ayman Farahat.
Information scent and web navigation: Theory, models
and automated usability evaluation. In Proceedings of
HCI International. 2005.

38. Peter Pirolli. 1997. Computational models of infor-
mation scent-following in a very large browsable text
collection. In Proceedings of the ACM SIGCHI Con-
ference on Human factors in computing systems (CHI
'97), 3-10. http://doi.acm.org/10.1145/258549.258558

39. Peter Pirolli. 2007. Information Foraging Theory: Adap-
tive Interaction with Information. Oxford University
Press.

40. Mary Beth Rosson and John M. Carroll. 1996. The re-
use of uses in smalltalk programming. ACM Transac-
tions on Software Engineering and Methodology 3, 3:
219-253. http://doi.acm.org/10.1145/234526.234530

End-User Programming #chi4good, CHI 2016, San Jose, CA, USA

3520

41. Chris Scaffidi, Chris Bogart, Margaret Burnett, Allen
Cypher, Brad Myers, and Mary Shaw. 2009. Predicting
reuse of end-user web macro scripts. In Visual Lan-
guages and Human-Centric Computing (VL/HCC '09),
93-
100. http://dx.doi.org/10.1109/VLHCC.2009.5295290

42. Sruti Srinivasa Ragavan. Variations Foraging – Tasks.
2015. Retrieved January 08, 2016 from
web.engr.oregonstate.edu/~srinivas/variations-
foraging-tasks.html

43. Michael Terry and Elizabeth D. Mynatt. 2002. Side
views: persistent, on-demand previews for open-ended
tasks. In Proceedings of the 15th annual ACM sympo-

sium on User interface software and technology (UIST
'02), 71-80. http://doi.acm.org/10.1145/571985.571996

44. Michael Terry, Elizabeth D. Mynatt, Kumiyo Nakakoji,
and Yasuhiro Yamamoto. 2004. Variation in element
and action: supporting simultaneous development of al-
ternative solutions. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (CHI
'04), 711-
718. http://doi.acm.org/10.1145/985692.985782

45. Young Seok Yoon and Brad A. Myers. 2014. A longi-
tudinal study of programmers' backtracking. In Visual
Languages and Human-Centric Computing (VL/HCC
'14), 101-
108. http://dx.doi.org/10.1109/VLHCC.2014.6883030

End-User Programming #chi4good, CHI 2016, San Jose, CA, USA

3521

