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Abstract. Recently, research has shown that replacing a human with an agent in 

a pair programming context can bring similar benefits such as increased code 

quality, productivity, self-efficacy, and knowledge transfer as it does with a 

human. However, to create a gender-inclusive agent, we need to understand the 

communication styles between human-human and human-agent pairs. To 

investigate the communication styles, we conducted gender-balanced studies 

with human-human pairs in a remote lab setting with 18 programmers and 

human-agent pairs using Wizard-of-Oz methodology with 14 programmers. Our 

quantitative and qualitative analysis of the communication styles between the two 

studies showed that humans were more comfortable asking questions to an agent 

and interacting with it than other humans. We also found men participants 

showed less uncertainty and trusted agent solutions more, while women 

participants used more instructions and apologized less to an agent. Our research 

results confirm the feasibility of creating gender-inclusive conversational agents 

for programming. 
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1 Introduction 

Conversational agents — such as automated customer support, personal virtual 

assistants, and social chatbots — have transformed human interactions with computers 

[40-46]. Despite phenomenal progress in conversational agent’s research there does not 

exist any such agent for programming tasks. To understand the design space of such an 

agent, we prototyped an interactive pair programming partner agent based on research 

from conversational agents, software engineering, education, human-robot interactions, 

psychology, and artificial intelligence [1,3-5].  

In pair programming, two programmers work simultaneously on one design, 

algorithm, code, or test [14-17]. Programmers switch between the roles of driver 

(writing code) and navigator (making suggestions). Pair programming provides various 

benefits, including increased code quality, productivity, creativity, knowledge 

management, and self-efficacy [18-30].  

Our agent provided similar benefits as of pair programming with another human[4]. 

It's active application of social skills as a navigator increased participants' confidence 

in the code and trust in the agent, while its technical skills as a driver helped participants 

realize their own solutions better [5]. 
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A key facet in the design of a gender-inclusive conversational agent is how it should 

account for different communication styles; an area where women and men are known 

to differ [9-12]. To reduce the possibility of gender biases in our agent, we need to 

consider communication styles of each gender. Therefore, we formulated the following 

research questions: 

R1. What communication styles are used by programmers when interacting with 

a human vs. an agent? 

R2. How do men's communication styles differ when interacting with a human vs. 

an agent? 

R3. How do women's communication styles differ when interacting with a human 

vs. an agent? 

2 Methodology 

A human-human study was conducted in a remote lab setting followed by a human-

agent study using Wizard of Oz technique to investigate the similarities and differences 

between human-human and human-agent interactions.  

2.1 Human-Human Study 

A human-human study was conducted to analyze interactions between humans in a pair 

programming environment. 18 computer science students were conducted on a first-

come first-serve basis, who each had at least a year of experience and some knowledge 

in java programming. Based on the background questionnaire, we identified only binary 

genders (men and women) from their own self-identification, though there are other 

genders [31, 32]. Hence, we paired students into gender balanced pairs (3 man-man, 3 

woman-woman, and 3 man-woman). Gender balanced data is essential for discovering 

gender biases in designs to avoid unintentional gender bias and to support gender 

specific problem solving [38, 39], communication techniques, and leadership styles 

[31-39]. Gender was the focus of the study as opposed to other demographics because 

of the well-documented negative effects of the gender gap in the STEM fields. 

We refer to each pair with the label HH-X with X being the gender of the individual: 

i.e., HH8-M7 and HH8-W9 refers to the seventh man participant and ninth woman 

participant who were in pair 8. 

 

Study Design 

The study was conducted in a lab setting to emulate a remote pair programming 

environment. Remote pair programming is known to have benefits in the likeness of 

collocated pair programming [54-56]. Every participant was required to complete a 

consent form, background questionnaire, and pre-self-efficacy questionnaire before the 

study [57]. Participants watched instructional video tutorials to teach them concepts of 
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test-driven development (e.g., writing test cases, implementing code), pair 

programming concepts (e.g., driver and navigator roles), and think-aloud study (e.g., 

vocalize any thoughts and feelings as they program [58]). Each pair communicated 

remotely using TeamViewer [117] and implementing the Eclipse IDE [118] to 

complete the task. Before the task was performed, the pairs were given a warm-up task 

to allow pair jelling, a period that allows them to adjust to their partner and work more 

efficiently [59].  

Participants were given the task of implementing a tic-tac-toe game in Java. The 

game was selected for the study due to its simplicity and popularity. In tic-tac-toe, two 

players take turns placing marks in a 3x3 grid until either one player successfully gets 

three marks consecutively, or winning becomes impossible, causing a tie. Participants 

needed to write methods and test cases to complete the game; however, methods for a 

board and the ability to place marks on it were already provided to them. User stories 

and acceptance criteria for the task were provided regarding win conditions, full board, 

taking turns, and a tie. Participants determined their own roles as driver and navigator. 

They were given 40 minutes to complete the task to prevent fatigue. Study sessions 

were recorded using the Morae screen capture tool [60]. After the session was 

completed, participants answered questionnaires on post-self-efficacy and their pair 

programming preferences. 

2.2 Human-Agent Study 

A Wizard of Oz lab study was conducted to identify the interactions between a human 

and an agent. The study design, and the data analysis, was like our previous human-

human study. 

 

Wizard of Oz 

Our study followed the basic components of a Wizard of Oz design. Wizard of Oz 

design helps to replicate a real virtual agent and effectively identify human interactions 

with an AI software [61-64].  Two wizards maintained the illusion of the agent, using 

dialogue options from a templated script. Participants had their face, voice, and screen 

were shared with the agent (the wizards). The wizards simulated a conversational agent 

through speech recognition, intent understanding, dialogue state tracking, dialogue 
policy, and response generation, using a constraint called the Wizard of Oz protocol 

[66]. For example, if the participant asked, “How to write code for the win game?”, the 

wizard would identify this question as “implementation help” and would subsequently 

choose the appropriate response from the wizard’s templated script: “I can make a 

recommendation from GitHub, would you like me to do so?” 

Participants pair programmed using the Saros plugin for the Eclipse IDE to facilitate 

remote collaboration with the agent (wizard). The agent (wizard) directly edited 

participants code using the Saros plugin for Eclipse [77]. Participants interacted with 

the agent, embodied by a 3D avatar, which was synchronized with the wizard’s face 

using the Facerig software [65]. They communicated directly with the agent using voice 

and it responded with voice-synthesized messages to reduce switching the context of 

the participants and to increase interactions with the wizard. The voice-synthesized 

messages were generated using Google Text-to-Speech. Text communication was used 

exclusively for sending links and pictures. Skype, Discord, and Google Hangouts were 
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used to facilitate video and audio communication of the participants with the wizard to 

give the illusion of a real programming conversational agent.  

 

Agent Design 

The agent’s design was inspired by multi-disciplinary research on human-computer 

interactions, conversational agents, human-robotic interactions, education, intelligent 

tutoring systems, psychology, and management science.  

The agent was designed to interact with its partners by using a dynamic 3D avatar, 

voice, and text chat that enhanced human-computer interactions [3, 67-70]. The 

inclusion of an avatar makes the agent more human-like, improving understanding, 

engagement, and trust in novice programmers [61, 71-76].  
The agent built rapport with participants as it greeted and introduced itself to them 

at the beginning of the study [78]. Further, it attributed success to the group and took 

personal responsibility for its mistakes. To increase participants’ trust [67, 79-81] the 

agent showed uncertainty about its work, asking for verification; for example, after 

adding code through the IDE, the agent would say “This might do the trick. I’m not sure 

though.”  

Motivation has a significant effect on performance of programmers and their 

productivity, also helping them to increase their creativity and their innovative 

outcomes [82-86]. Motivation was implemented in the study with motivational 

statements like “I think this looks good,” and “I’m not sure what we’re doing here, but 

we can always test it.” being given to participants upon both success and failure. 
The agent’s ability to contribute code (driver role) and give feedback (navigator role) 

were based on automated code/feedback techniques that require past solutions and 

search-based feedback [87-92]. The agent was designed to identify unnecessary code 

found in variables, functions, and classes based on automated tools like UCDetector 

[93]. If the participant asked for the location of variables/classes/methods within the 

code, the agent’s ability to respond was based on both static and dynamic feature 

location techniques [94, 95]. Generating test cases automatically (i.e., without past 
solutions) was done by either code search algorithms or converting user stories to 

scenarios and then to test cases [96-99]. The agent could identify missing code using a 

technique investigated in the Haskell programming language [100]. 

 Creative thinking is essential to a programmer’s success especially when solving 

open-ended problems [18, 101-108]. To encourage diversity in thinking the agent 

offered abstract code templates, code examples, and alternate implementations. This 

decision was motivated by Tsuei’s research that imperfect guidance enhances creativity 

and encourages exploration of new ideas [109]. Creativity theory suggests the 

production of a large number of ideas to arrive at creative ones through ideational 

fluency, since agents themselves cannot ideate [110]. Thus, the agent may ask things 

like, “Are there other ways to do this?” 
The agent’s responses were tuned to its performance with the partner giving just-in-

time help when needed; it also apologized for incorrect or unknown answers, expressed 

uncertainty, and gave who/what/when/why/where/how answers accompanied with 

directions or suggestions [111, 112]. The agent also provided verbal feedback by 

presenting content and code templates to help the programmer’s memory. For example, 

the agent corrected a participant by highlighting code and giving verbal suggestions. 
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Doing so addressed a self-presentation bias that induces a lack of memory retention on 

the human’s part [113 - 116]. 

Study Design 

14 participants (7 men and 7 women) were recruited for the study through 

advertisements and a recruitment site called Upwork. Eight of our participants were 

university students (4 men and 4 women) and six were professional programmers (3 

men and 3 women). This study was conducted during the COVID-19 pandemic. 

Therefore, virtual lab studies were conducted from participants throughout United 

States.  

The study design was like the human-human study, except (1) the participant 

completed the task with an agent, (2) they were given an instructional tutorial on the 

agent, (3) no pair jelling was incorporated, and (4) the agent changed gender 

presentation halfway through the study. We split the gender embodiment of the agent 

equally among the study sessions to counterbalance. Each participant signed a consent 

form at the end of the study, as it was a deception study. 

2.3 Analysis of Data 

Audio and Video of each session was recorded in both human-human and human-agent 

studies. These recording were then transcribed into individual snippets of dialogue 

which were subsequently sorted by their intent. The intent of each was represented by 

dialogue acts as described in Table 1. “Dialogue acts” have been used to classify human 

utterances using criteria based on a combination of pragmatics, semantics, and syntaxes 

[47]. Dialogue acts enable us to understand verbal communication as well as 

conversations via Hidden Markov Models [47], which are necessary for a 

conversational agent. 20% of the transcripts were coded by three researchers. Once they 

reached the inter-rater reliability of 90% (using the Jaccard measure [48]), two 

researchers independently coded the rest of the transcripts. We analyzed the data 

qualitatively and quantitatively to understand the differences of communication styles 

between humans with humans and humans with an agent. 

Table 1. The dialogue acts and their definitions as used to code the study transcriptions. 

 

Dialogue Acts Definition 

Abandoned An Unfinished Remark 

Acknowledgement Acceptance of the existence of something 

Answer No “No” responses 

Apology A regretful acknowledgement of failure 

Answer W/H Questions Answering who/what/when/where/why/how questions 

Answer Yes “Yes” Responses 

Direct Instruction An explicit instruction 

Feedback Non-Positive A non-positive response or comment 
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Feedback Positive A positive response or comment 

Indirect Instruction Implicit or polite instruction 

Other (Filler Words) Meaningless words 

W/H/ QUESTION A who/what/when/where/why/how question 

Questions Yes/No Questions asking for a yes/no answer 

Statement A declaration or remark 

Uncertainty Dialogue that indicates uncertainty 

3 Results 

The results of the studies: both similarities and differences in the communication styles 

(dialogue acts) are summarized in Table 2. The differences between the studies in 

regard to the research questions are discussed subsequently. 

Table 2. The dialogue acts for human-human and human-agent studies. The most prominent 

difference in dialogue acts is highlighted. Yellow for humans with humans vs. agent (RQ1), 

peach for women with human vs. agent (RQ2), and blue for men with human vs. agent (RQ3). 

Dialogue Acts 
Human-Human Human-Agent 

M[#] W[#] Total %age M[#] W[#] Total %age 

Abandoned 97[9] 108[8] 205 6.01 104[7] 101[7] 205 6.56 

Acknowledgement 295[9] 326[9] 621 18.22 129[7] 166[7] 295 9.43 

Answer No 5[6] 16[6] 21 0.62 6[7] 3[3] 9 0.29 

Apology 7[6] 10[5] 17 0.50 5[5] 4[4] 9 0.29 

Answer W/H Questions 21[9] 19[5] 40 1.17 65[7] 62[7] 127 4.06 

Answer Yes 52[9] 51[9] 103 3.02 70[7] 55[7] 125 4.00 

Direct Instruction 87[9] 72[9] 159 4.66 46[7] 81[7] 127 4.06 

Feedback Non-Positive 23[8] 14[5] 37 1.09 7[5] 4[4] 11 0.35 

Feedback Positive 58[9] 26[7] 84 2.47 23[6] 49[7] 72 2.30 

Indirect Instruction 129[9] 89[9] 218 6.39 78[7] 120[7] 198 6.33 

Other (Filler Words) 126[9] 112[9] 238 6.98 46[7] 61[7] 107 3.42 

W/H Questions  48[9] 62[8] 110 3.23 82[7] 96[7] 178 5.69 

Questions Yes/No 97[9] 119[9] 216 6.34 84[7] 125[7] 209 6.68 

Statement 688[9] 592[9] 1280 37.55 657[7] 753[7] 1410 45.09 

Uncertainty 27[9] 33[9] 60 1.76 16[7] 29[5] 45 1.44 

Total 1760 1649 3409  1418 1709 3127  

 

RQ1: What communication styles are used by programmers when interacting 

with a human vs. an agent? 

To answer RQ1, we compared the dialogue acts used by participants (both men and 

women) with another participant and with our agent. Table 2 shows (in yellow) the 
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frequencies of different dialogue acts for human-human vs. human-agent. The different 

communication styles found between human-human vs. human-agent were: 

More filler words with humans vs. fully articulated thoughts with an agent. 

Participants in the human-human study used 55% more filler words (see Table 2) to 

give their verifications or to fill the gaps in the communication. For example, when 

HH1-M2 was implementing the horizontal win condition, M1 responded with “Um” 

“Ok,” or “Huh” while responding to M2’s thought process. Conversely, while 

communicating with agent partners, participants fully formulated their thoughts before 

articulating them. The agent themselves never used filler words, as they followed a 

script.  

 

Non-positive feedback and acknowledgment to other humans vs. agents 

In the human-human study, participants used non-positive feedback 70.3% more 

than their counterparts in the human-agent study. For example, HH9-M8 gave non-

positive feedback for implementation of the win method with a sarcastic comment: 

“okay, so it’s a failure, awesome.” Similarly, HH7-W8 gave non-positive feedback to 

her partner’s idea when she stated “Yeah, I’m not sure about that one.” The decreased 

usage of non-positive feedback in the human-agent study stemmed from our design 

choice of agent being motivational, empathetic, and a rapport-builder. 

The human-human study participants acknowledged their partners’ ideas 52.5% 

more than human-agent participants. For example, in HH9, M8 shared a possible 

solution for checking diagonal win conditions and suggested the usage of multiple 

‘loops’, to which his partner M9 responded “Yeah we could do something like that.” 

Later in the same study, they switched roles, describing a test method he (M9) might 

want to implement and M8 confirming “Yeah, I think that'll work.” These types of 

dialogue acts did not appear as frequently in the human-agent studies. One possible 

reason for this could be that when conversing with another person acknowledgement is 

key to effectively communicating ideas [49] and hence, in the absence of another 

human the acknowledgement was decreased.  

Asked more WH Questions from the agent vs. human 

Participants from the human-agent study also asked 38.2% more W/H 

(who/what/when/why/where/how) questions to an agent as compared to the human-

human study. For example, after getting stuck, HA-M6 prompts the agent by 

commenting, “What do you think?”  and later with “How about you drive.” 

Additionally, HA-W13 asked questions such as “Why would you return true?” “How 

do we check?” The WH question were asked by participants to clarify, understand the 

code, prompt for feedback, or ask for help.  

Human participants were more reliant on the agent as they had more confidence in 

the agent’s responses and solutions. For example, HA-M3 asked the agent, “What do 

you think the mistake is?” The agent replied with, “You have a missing bracket on line 

66”. This helped participants quickly find out the error and save time. HA-M3 also 

asked, “What’s the next story?” or “What’s story number four?” This helped the 
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participants navigate quickly between tasks.  Participants in human-agent study were 

more comfortable with the agent and saw it as a non-judgmental partner [4]. 

 

RQ2: How do men's communication styles differ when interacting with a human 

vs. an agent? 

We found the following differences (highlighted in peach in Table 2) in men’s 

communication style with another human (man/woman) vs. an agent.  

 

Men showed more uncertainty with another human vs. an agent  

Men participants in the Human-Human study were 40.7% more uncertain about the 

task. For example, in HH2, both participants were uncertain about the next step, as M3 

commented “Ya I don’t know”, to which M4 responded “I’m not sure how we can write 

a test for this because it’s not going to evaluate to true or false you know.” Humans 

trust agents more than other humans [50], and this was evident as HA-M8 commented 

“the computer knows more … than a human knows… I would trust a computer more.”  

 

Men gave more positive feedback to their human partners 

Men participants of the human-human study showed 60.3% more positive feedback, 

listened to their partners, and acknowledged their suggestions. All nine men 

participants showed positive feedback during the human-human study. For example, in 

HH1, while working on method to place marks on a board, M1 laughed and commented 

“It’s ugly but it should work” to which M2 responded with a laugh and commented 

“Yeah, that’s how I feel sometimes”. The frequency of acknowledgement was twice as 

high in the human-human study than in the human-agent study. For example, in HH2, 

M4 was describing how to keep track of current player, placing the mark. M3 listened 

carefully and acknowledged HH2-M4’s thought process without abandoning it mid-

point.  

 

Men gave more direct and indirect instructions to another human partner than an 

agent 

Men participants gave 51.8% more direct and indirect instructions to another human 

partner than to an agent. Direct instructions are an explicit way of expressing what 

needs to be done while indirect instructions are a subtle way of suggesting things that 

need to be done. Direct instructions were used to express what aspect of the problem 

needs to be done and how to accomplish it. For example, in HH3, when W1 tried to 

explain the logic for checking if marks are in the same row verbally, M5 explicitly said 

“Uh, write it out for me. I, I can visualize it a bit better if I can see it,” Indirect 

instructions were used for directions, suggestions, agreeing to tasks, and giving control. 

HH1-M1 gave indirect instructions to M2 and commented “We could probably use the 

code for tie winner, but that’s my guess.” 

 

RQ3: How do women's communication styles differ when interacting with a 

human vs. an agent? 
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We found the following differences (highlighted blue in Table 2) in women’s 

communication style with another human (man/woman) vs. an agent. Women 

participants talked more with an agent, as the number of statements was 21.4% more 

than with another human. 

Women used more direct and indirect instructions with an agent than with another 

human 

Women participants used 19.9% more instructions (both direct and indirect) to direct 

the flow of the task process with an agent. For example, HA-W4 was more vocal and 

direct with the agent. She was controlling the flow of dialogue with “Do it again”, 

“Sure, let’s do that”, and “Try it”.  She also used indirect instructions to implicitly direct 

the flow as she commented “Okay, Um, so we need to add test”, “I think there needs to 

be more code in check ties”, and “Should we just try placing”.  

 

Women apologized more with a human partner than with an agent 

Women participants tended to apologize with a human partner when an answer was 

unknown or wrong. While working with an agent, women were less self-conscious 

when they made mistakes and were more confident in their approaches.  For example, 

in HH4, W3 apologized to her partner for simple things like clicking by mistake as she 

commented “Sorry, I’m clicking”. Likewise, HH4-W2 read the task wrong and she 

apologized immediately “Oh, sorry,…oh my gosh. I’m so sorry. I read that wrong.” 

Women build rapport with their human partner, not wanting to let their partner down 

[52, 53]. 

 

Women disagreed with another human with a no 

Women participants disagreed (with a “No”) 81% more with a human partner than 

an agent.  For example, in HH4, W2 asked if they need to write a test case for mark 

placed, to which her partner W3 responded “No no no...” 

 

Women positively responded to an agent 

Women participants gave 46.9% more positive feedback to an agent than to a human 

partner. For example, HA-W4 responded positively to agent’s code by commenting, “It 

does make more sense.”  

4 Discussions 

Our results shed light on the conversational styles of humans, both men and women, 

with other humans and agents. As seen in RQ2 and RQ3 the communication styles were 

different for both men and women, hence, to create a gender-inclusive programming 

agent we should integrate styles from both genders. Some of the implications for 

programming conversational agents are detailed as follows.  

Conversational agents for problem solving tasks should support WH questions and 

answers, WH answers should be accompanied by directions and suggestions. In our 

study, while answering, humans tended to answer yes/no more frequently but the agent 

should explain the logic behind the code or explanations regarding the decisions made 
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by the agent. HA-M6 mentioned that the agent should give a “more specific, 

explanatory approach like a human.” Though generating human-like explanation and 

discussions regarding programming may be hard to implement with the current 

technology, utilizing the static and dynamic testing approaches, generating visually 

explainable solutions can make the agent more human-like. Further, such plausible 

explanations can help to build trust of both professionals and students with an agent 

and in its solutions [50], while a lack of such explanations may affect losing trust. The 

agent should show vulnerabilities of being a machine and expose its limitations to 

increase trust with a human partner. When a human shows uncertainty, the agent should 

better explain using visualizations and the underlying concepts of how it arrived at a 

specific solution. Additionally, the agent should provide better verbal feedback and 

present content and code templates to jog the programmer’s memory.  For example, to 

correct a programmer, the agent should highlight the code segments while giving verbal 

and visual suggestions about the code. One approach to generate such explanations 

could be using deep learning techniques and training them on WH questions. However, 

such training will require tremendous amount of data on pair programming 

conversations that currently is unavailable. Further, supporting gender specific problem 

solving [37-39], and leadership styles [2] should also be facilitated by a gender-

inclusive agent.  

Engaging the human partner with both positive and negative feedback was important 

for the success of the task. The feedback from human as well as agent was regarding 

(1) status of the code i.e., pass/fail/unexpected results, (2) code reviews i.e., 

correct/incorrect/coding style, (3) idea implemented work/fails, (4) agreement, and (5) 

motivation. The positive feedback helped human partners to stay motivated and 

engaged in the task, while negative feedback was on mistakes in the code and helped 

them to improve quality of the code. Both positive and negative feedback are 

important towards problem solving tasks and hence should be used as integral parts of 

the conversational agents. Since there were differences in how each gender used 

feedback, it will be important that a gender-inclusive agent is able to adapt itself 

based on past conversations. This is especially important regarding negative feedback, 

which should be dealt more carefully. For-example, if there is a typo, the agent can 

correct the typo by itself but if there is a logical error or the problem-solving approach 

is wrong, the agent should give suggestions.  

One implication for machine learning algorithms is to train them on different genders 

(equal number of men, women and non-binary) to capture the diversity of 

conversational styles. The differences between the communication styles between 

different genders necessitate inclusion of features in the machine learning algorithms 

that can capture these differences. Hence, avoiding agents that support misogynistic 

ideologies in machine learning [33-36] and support more gender-inclusive machine 

learning algorithms. 
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5 Conclusion 

We take the first step towards creating a gender-inclusive Alexa-like programming 

partner. This paper contributes to understanding the differences between human-human 

and human-agent conversations, and how gender effects conversations.  

1. RQ1: Communication Styles: Human vs. Agent. Participants in human-human 

study gave more directions to complete the task and said more filler words. They 

also expressed non-positive feedback and acknowledged their partners’ ideas and 

interjected when they thought they could help. They also asked more W/H questions 

as they were comfortable with the agent.  

2. RQ2: Men’s Communication Styles: Human vs. Agent. Men participants 

motivated their human partner through positive feedback and giving direction using 

both direct and indirect instructions. Men participants also showed more trust with 

the agent. 

3. RQ3: Women’s Communication Styles: Human vs. Agent. Women participants 

disagreed and apologized more with a human partner while making rapport with 

them. They instructed the agent and gave more positive feedback. Hence, women 

participants were hesitant to communicate with human partners. 

Finally, we discuss the implications for a gender-inclusive conversational agent. The 

implications include interface design of such an agent as well as for training machine-

learning algorithms.  
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