
Designing a Gender-Inclusive Conversational Agent

for Pair Programming: An Empirical Investigation

Sandeep Kaur Kuttal1, Abim Sedhain2 and Jacob AuBuchon3

1-3 University of Tulsa, Tulsa OK 74104, USA

sandeep-kuttal,abs5423,jsa6790@utulsa.edu

Abstract. Recently, research has shown that replacing a human with an agent in

a pair programming context can bring similar benefits such as increased code

quality, productivity, self-efficacy, and knowledge transfer as it does with a

human. However, to create a gender-inclusive agent, we need to understand the

communication styles between human-human and human-agent pairs. To

investigate the communication styles, we conducted gender-balanced studies

with human-human pairs in a remote lab setting with 18 programmers and

human-agent pairs using Wizard-of-Oz methodology with 14 programmers. Our

quantitative and qualitative analysis of the communication styles between the two

studies showed that humans were more comfortable asking questions to an agent

and interacting with it than other humans. We also found men participants

showed less uncertainty and trusted agent solutions more, while women

participants used more instructions and apologized less to an agent. Our research

results confirm the feasibility of creating gender-inclusive conversational agents

for programming.

Keywords: Gender, Conversational Agents, Communication Style.

1 Introduction

Conversational agents — such as automated customer support, personal virtual

assistants, and social chatbots — have transformed human interactions with computers

[40-46]. Despite phenomenal progress in conversational agent’s research there does not

exist any such agent for programming tasks. To understand the design space of such an

agent, we prototyped an interactive pair programming partner agent based on research

from conversational agents, software engineering, education, human-robot interactions,

psychology, and artificial intelligence [1,3-5].

In pair programming, two programmers work simultaneously on one design,

algorithm, code, or test [14-17]. Programmers switch between the roles of driver

(writing code) and navigator (making suggestions). Pair programming provides various

benefits, including increased code quality, productivity, creativity, knowledge

management, and self-efficacy [18-30].

Our agent provided similar benefits as of pair programming with another human[4].

It's active application of social skills as a navigator increased participants' confidence

in the code and trust in the agent, while its technical skills as a driver helped participants

realize their own solutions better [5].

2

A key facet in the design of a gender-inclusive conversational agent is how it should

account for different communication styles; an area where women and men are known

to differ [9-12]. To reduce the possibility of gender biases in our agent, we need to

consider communication styles of each gender. Therefore, we formulated the following

research questions:

R1. What communication styles are used by programmers when interacting with

a human vs. an agent?

R2. How do men's communication styles differ when interacting with a human vs.

an agent?

R3. How do women's communication styles differ when interacting with a human

vs. an agent?

2 Methodology

A human-human study was conducted in a remote lab setting followed by a human-

agent study using Wizard of Oz technique to investigate the similarities and differences

between human-human and human-agent interactions.

2.1 Human-Human Study

A human-human study was conducted to analyze interactions between humans in a pair

programming environment. 18 computer science students were conducted on a first-

come first-serve basis, who each had at least a year of experience and some knowledge

in java programming. Based on the background questionnaire, we identified only binary

genders (men and women) from their own self-identification, though there are other

genders [31, 32]. Hence, we paired students into gender balanced pairs (3 man-man, 3

woman-woman, and 3 man-woman). Gender balanced data is essential for discovering

gender biases in designs to avoid unintentional gender bias and to support gender

specific problem solving [38, 39], communication techniques, and leadership styles

[31-39]. Gender was the focus of the study as opposed to other demographics because

of the well-documented negative effects of the gender gap in the STEM fields.

We refer to each pair with the label HH-X with X being the gender of the individual:

i.e., HH8-M7 and HH8-W9 refers to the seventh man participant and ninth woman

participant who were in pair 8.

Study Design

The study was conducted in a lab setting to emulate a remote pair programming

environment. Remote pair programming is known to have benefits in the likeness of

collocated pair programming [54-56]. Every participant was required to complete a

consent form, background questionnaire, and pre-self-efficacy questionnaire before the

study [57]. Participants watched instructional video tutorials to teach them concepts of

3

test-driven development (e.g., writing test cases, implementing code), pair

programming concepts (e.g., driver and navigator roles), and think-aloud study (e.g.,

vocalize any thoughts and feelings as they program [58]). Each pair communicated

remotely using TeamViewer [117] and implementing the Eclipse IDE [118] to

complete the task. Before the task was performed, the pairs were given a warm-up task

to allow pair jelling, a period that allows them to adjust to their partner and work more

efficiently [59].

Participants were given the task of implementing a tic-tac-toe game in Java. The

game was selected for the study due to its simplicity and popularity. In tic-tac-toe, two

players take turns placing marks in a 3x3 grid until either one player successfully gets

three marks consecutively, or winning becomes impossible, causing a tie. Participants

needed to write methods and test cases to complete the game; however, methods for a

board and the ability to place marks on it were already provided to them. User stories

and acceptance criteria for the task were provided regarding win conditions, full board,

taking turns, and a tie. Participants determined their own roles as driver and navigator.

They were given 40 minutes to complete the task to prevent fatigue. Study sessions

were recorded using the Morae screen capture tool [60]. After the session was

completed, participants answered questionnaires on post-self-efficacy and their pair

programming preferences.

2.2 Human-Agent Study

A Wizard of Oz lab study was conducted to identify the interactions between a human

and an agent. The study design, and the data analysis, was like our previous human-

human study.

Wizard of Oz

Our study followed the basic components of a Wizard of Oz design. Wizard of Oz

design helps to replicate a real virtual agent and effectively identify human interactions

with an AI software [61-64]. Two wizards maintained the illusion of the agent, using

dialogue options from a templated script. Participants had their face, voice, and screen

were shared with the agent (the wizards). The wizards simulated a conversational agent

through speech recognition, intent understanding, dialogue state tracking, dialogue
policy, and response generation, using a constraint called the Wizard of Oz protocol

[66]. For example, if the participant asked, “How to write code for the win game?”, the

wizard would identify this question as “implementation help” and would subsequently

choose the appropriate response from the wizard’s templated script: “I can make a

recommendation from GitHub, would you like me to do so?”

Participants pair programmed using the Saros plugin for the Eclipse IDE to facilitate

remote collaboration with the agent (wizard). The agent (wizard) directly edited

participants code using the Saros plugin for Eclipse [77]. Participants interacted with

the agent, embodied by a 3D avatar, which was synchronized with the wizard’s face

using the Facerig software [65]. They communicated directly with the agent using voice

and it responded with voice-synthesized messages to reduce switching the context of

the participants and to increase interactions with the wizard. The voice-synthesized

messages were generated using Google Text-to-Speech. Text communication was used

exclusively for sending links and pictures. Skype, Discord, and Google Hangouts were

4

used to facilitate video and audio communication of the participants with the wizard to

give the illusion of a real programming conversational agent.

Agent Design

The agent’s design was inspired by multi-disciplinary research on human-computer

interactions, conversational agents, human-robotic interactions, education, intelligent

tutoring systems, psychology, and management science.

The agent was designed to interact with its partners by using a dynamic 3D avatar,

voice, and text chat that enhanced human-computer interactions [3, 67-70]. The

inclusion of an avatar makes the agent more human-like, improving understanding,

engagement, and trust in novice programmers [61, 71-76].
The agent built rapport with participants as it greeted and introduced itself to them

at the beginning of the study [78]. Further, it attributed success to the group and took

personal responsibility for its mistakes. To increase participants’ trust [67, 79-81] the

agent showed uncertainty about its work, asking for verification; for example, after

adding code through the IDE, the agent would say “This might do the trick. I’m not sure

though.”

Motivation has a significant effect on performance of programmers and their

productivity, also helping them to increase their creativity and their innovative

outcomes [82-86]. Motivation was implemented in the study with motivational

statements like “I think this looks good,” and “I’m not sure what we’re doing here, but

we can always test it.” being given to participants upon both success and failure.
The agent’s ability to contribute code (driver role) and give feedback (navigator role)

were based on automated code/feedback techniques that require past solutions and

search-based feedback [87-92]. The agent was designed to identify unnecessary code

found in variables, functions, and classes based on automated tools like UCDetector

[93]. If the participant asked for the location of variables/classes/methods within the

code, the agent’s ability to respond was based on both static and dynamic feature

location techniques [94, 95]. Generating test cases automatically (i.e., without past
solutions) was done by either code search algorithms or converting user stories to

scenarios and then to test cases [96-99]. The agent could identify missing code using a

technique investigated in the Haskell programming language [100].

 Creative thinking is essential to a programmer’s success especially when solving

open-ended problems [18, 101-108]. To encourage diversity in thinking the agent

offered abstract code templates, code examples, and alternate implementations. This

decision was motivated by Tsuei’s research that imperfect guidance enhances creativity

and encourages exploration of new ideas [109]. Creativity theory suggests the

production of a large number of ideas to arrive at creative ones through ideational

fluency, since agents themselves cannot ideate [110]. Thus, the agent may ask things

like, “Are there other ways to do this?”
The agent’s responses were tuned to its performance with the partner giving just-in-

time help when needed; it also apologized for incorrect or unknown answers, expressed

uncertainty, and gave who/what/when/why/where/how answers accompanied with

directions or suggestions [111, 112]. The agent also provided verbal feedback by

presenting content and code templates to help the programmer’s memory. For example,

the agent corrected a participant by highlighting code and giving verbal suggestions.

5

Doing so addressed a self-presentation bias that induces a lack of memory retention on

the human’s part [113 - 116].

Study Design

14 participants (7 men and 7 women) were recruited for the study through

advertisements and a recruitment site called Upwork. Eight of our participants were

university students (4 men and 4 women) and six were professional programmers (3

men and 3 women). This study was conducted during the COVID-19 pandemic.

Therefore, virtual lab studies were conducted from participants throughout United

States.

The study design was like the human-human study, except (1) the participant

completed the task with an agent, (2) they were given an instructional tutorial on the

agent, (3) no pair jelling was incorporated, and (4) the agent changed gender

presentation halfway through the study. We split the gender embodiment of the agent

equally among the study sessions to counterbalance. Each participant signed a consent

form at the end of the study, as it was a deception study.

2.3 Analysis of Data

Audio and Video of each session was recorded in both human-human and human-agent

studies. These recording were then transcribed into individual snippets of dialogue

which were subsequently sorted by their intent. The intent of each was represented by

dialogue acts as described in Table 1. “Dialogue acts” have been used to classify human

utterances using criteria based on a combination of pragmatics, semantics, and syntaxes

[47]. Dialogue acts enable us to understand verbal communication as well as

conversations via Hidden Markov Models [47], which are necessary for a

conversational agent. 20% of the transcripts were coded by three researchers. Once they

reached the inter-rater reliability of 90% (using the Jaccard measure [48]), two

researchers independently coded the rest of the transcripts. We analyzed the data

qualitatively and quantitatively to understand the differences of communication styles

between humans with humans and humans with an agent.

Table 1. The dialogue acts and their definitions as used to code the study transcriptions.

Dialogue Acts Definition

Abandoned An Unfinished Remark

Acknowledgement Acceptance of the existence of something

Answer No “No” responses

Apology A regretful acknowledgement of failure

Answer W/H Questions Answering who/what/when/where/why/how questions

Answer Yes “Yes” Responses

Direct Instruction An explicit instruction

Feedback Non-Positive A non-positive response or comment

6

Feedback Positive A positive response or comment

Indirect Instruction Implicit or polite instruction

Other (Filler Words) Meaningless words

W/H/ QUESTION A who/what/when/where/why/how question

Questions Yes/No Questions asking for a yes/no answer

Statement A declaration or remark

Uncertainty Dialogue that indicates uncertainty

3 Results

The results of the studies: both similarities and differences in the communication styles

(dialogue acts) are summarized in Table 2. The differences between the studies in

regard to the research questions are discussed subsequently.

Table 2. The dialogue acts for human-human and human-agent studies. The most prominent

difference in dialogue acts is highlighted. Yellow for humans with humans vs. agent (RQ1),

peach for women with human vs. agent (RQ2), and blue for men with human vs. agent (RQ3).

Dialogue Acts
Human-Human Human-Agent

M[#] W[#] Total %age M[#] W[#] Total %age

Abandoned 97[9] 108[8] 205 6.01 104[7] 101[7] 205 6.56

Acknowledgement 295[9] 326[9] 621 18.22 129[7] 166[7] 295 9.43

Answer No 5[6] 16[6] 21 0.62 6[7] 3[3] 9 0.29

Apology 7[6] 10[5] 17 0.50 5[5] 4[4] 9 0.29

Answer W/H Questions 21[9] 19[5] 40 1.17 65[7] 62[7] 127 4.06

Answer Yes 52[9] 51[9] 103 3.02 70[7] 55[7] 125 4.00

Direct Instruction 87[9] 72[9] 159 4.66 46[7] 81[7] 127 4.06

Feedback Non-Positive 23[8] 14[5] 37 1.09 7[5] 4[4] 11 0.35

Feedback Positive 58[9] 26[7] 84 2.47 23[6] 49[7] 72 2.30

Indirect Instruction 129[9] 89[9] 218 6.39 78[7] 120[7] 198 6.33

Other (Filler Words) 126[9] 112[9] 238 6.98 46[7] 61[7] 107 3.42

W/H Questions 48[9] 62[8] 110 3.23 82[7] 96[7] 178 5.69

Questions Yes/No 97[9] 119[9] 216 6.34 84[7] 125[7] 209 6.68

Statement 688[9] 592[9] 1280 37.55 657[7] 753[7] 1410 45.09

Uncertainty 27[9] 33[9] 60 1.76 16[7] 29[5] 45 1.44

Total 1760 1649 3409 1418 1709 3127

RQ1: What communication styles are used by programmers when interacting

with a human vs. an agent?

To answer RQ1, we compared the dialogue acts used by participants (both men and

women) with another participant and with our agent. Table 2 shows (in yellow) the

7

frequencies of different dialogue acts for human-human vs. human-agent. The different

communication styles found between human-human vs. human-agent were:

More filler words with humans vs. fully articulated thoughts with an agent.

Participants in the human-human study used 55% more filler words (see Table 2) to

give their verifications or to fill the gaps in the communication. For example, when

HH1-M2 was implementing the horizontal win condition, M1 responded with “Um”

“Ok,” or “Huh” while responding to M2’s thought process. Conversely, while

communicating with agent partners, participants fully formulated their thoughts before

articulating them. The agent themselves never used filler words, as they followed a

script.

Non-positive feedback and acknowledgment to other humans vs. agents

In the human-human study, participants used non-positive feedback 70.3% more

than their counterparts in the human-agent study. For example, HH9-M8 gave non-

positive feedback for implementation of the win method with a sarcastic comment:

“okay, so it’s a failure, awesome.” Similarly, HH7-W8 gave non-positive feedback to

her partner’s idea when she stated “Yeah, I’m not sure about that one.” The decreased

usage of non-positive feedback in the human-agent study stemmed from our design

choice of agent being motivational, empathetic, and a rapport-builder.

The human-human study participants acknowledged their partners’ ideas 52.5%

more than human-agent participants. For example, in HH9, M8 shared a possible

solution for checking diagonal win conditions and suggested the usage of multiple

‘loops’, to which his partner M9 responded “Yeah we could do something like that.”

Later in the same study, they switched roles, describing a test method he (M9) might

want to implement and M8 confirming “Yeah, I think that'll work.” These types of

dialogue acts did not appear as frequently in the human-agent studies. One possible

reason for this could be that when conversing with another person acknowledgement is

key to effectively communicating ideas [49] and hence, in the absence of another

human the acknowledgement was decreased.

Asked more WH Questions from the agent vs. human

Participants from the human-agent study also asked 38.2% more W/H

(who/what/when/why/where/how) questions to an agent as compared to the human-

human study. For example, after getting stuck, HA-M6 prompts the agent by

commenting, “What do you think?” and later with “How about you drive.”

Additionally, HA-W13 asked questions such as “Why would you return true?” “How

do we check?” The WH question were asked by participants to clarify, understand the

code, prompt for feedback, or ask for help.

Human participants were more reliant on the agent as they had more confidence in

the agent’s responses and solutions. For example, HA-M3 asked the agent, “What do

you think the mistake is?” The agent replied with, “You have a missing bracket on line

66”. This helped participants quickly find out the error and save time. HA-M3 also

asked, “What’s the next story?” or “What’s story number four?” This helped the

8

participants navigate quickly between tasks. Participants in human-agent study were

more comfortable with the agent and saw it as a non-judgmental partner [4].

RQ2: How do men's communication styles differ when interacting with a human

vs. an agent?

We found the following differences (highlighted in peach in Table 2) in men’s

communication style with another human (man/woman) vs. an agent.

Men showed more uncertainty with another human vs. an agent

Men participants in the Human-Human study were 40.7% more uncertain about the

task. For example, in HH2, both participants were uncertain about the next step, as M3

commented “Ya I don’t know”, to which M4 responded “I’m not sure how we can write

a test for this because it’s not going to evaluate to true or false you know.” Humans

trust agents more than other humans [50], and this was evident as HA-M8 commented

“the computer knows more … than a human knows… I would trust a computer more.”

Men gave more positive feedback to their human partners

Men participants of the human-human study showed 60.3% more positive feedback,

listened to their partners, and acknowledged their suggestions. All nine men

participants showed positive feedback during the human-human study. For example, in

HH1, while working on method to place marks on a board, M1 laughed and commented

“It’s ugly but it should work” to which M2 responded with a laugh and commented

“Yeah, that’s how I feel sometimes”. The frequency of acknowledgement was twice as

high in the human-human study than in the human-agent study. For example, in HH2,

M4 was describing how to keep track of current player, placing the mark. M3 listened

carefully and acknowledged HH2-M4’s thought process without abandoning it mid-

point.

Men gave more direct and indirect instructions to another human partner than an

agent

Men participants gave 51.8% more direct and indirect instructions to another human

partner than to an agent. Direct instructions are an explicit way of expressing what

needs to be done while indirect instructions are a subtle way of suggesting things that

need to be done. Direct instructions were used to express what aspect of the problem

needs to be done and how to accomplish it. For example, in HH3, when W1 tried to

explain the logic for checking if marks are in the same row verbally, M5 explicitly said

“Uh, write it out for me. I, I can visualize it a bit better if I can see it,” Indirect

instructions were used for directions, suggestions, agreeing to tasks, and giving control.

HH1-M1 gave indirect instructions to M2 and commented “We could probably use the

code for tie winner, but that’s my guess.”

RQ3: How do women's communication styles differ when interacting with a

human vs. an agent?

9

We found the following differences (highlighted blue in Table 2) in women’s

communication style with another human (man/woman) vs. an agent. Women

participants talked more with an agent, as the number of statements was 21.4% more

than with another human.

Women used more direct and indirect instructions with an agent than with another

human

Women participants used 19.9% more instructions (both direct and indirect) to direct

the flow of the task process with an agent. For example, HA-W4 was more vocal and

direct with the agent. She was controlling the flow of dialogue with “Do it again”,

“Sure, let’s do that”, and “Try it”. She also used indirect instructions to implicitly direct

the flow as she commented “Okay, Um, so we need to add test”, “I think there needs to

be more code in check ties”, and “Should we just try placing”.

Women apologized more with a human partner than with an agent

Women participants tended to apologize with a human partner when an answer was

unknown or wrong. While working with an agent, women were less self-conscious

when they made mistakes and were more confident in their approaches. For example,

in HH4, W3 apologized to her partner for simple things like clicking by mistake as she

commented “Sorry, I’m clicking”. Likewise, HH4-W2 read the task wrong and she

apologized immediately “Oh, sorry,…oh my gosh. I’m so sorry. I read that wrong.”

Women build rapport with their human partner, not wanting to let their partner down

[52, 53].

Women disagreed with another human with a no

Women participants disagreed (with a “No”) 81% more with a human partner than

an agent. For example, in HH4, W2 asked if they need to write a test case for mark

placed, to which her partner W3 responded “No no no...”

Women positively responded to an agent

Women participants gave 46.9% more positive feedback to an agent than to a human

partner. For example, HA-W4 responded positively to agent’s code by commenting, “It

does make more sense.”

4 Discussions

Our results shed light on the conversational styles of humans, both men and women,

with other humans and agents. As seen in RQ2 and RQ3 the communication styles were

different for both men and women, hence, to create a gender-inclusive programming

agent we should integrate styles from both genders. Some of the implications for

programming conversational agents are detailed as follows.

Conversational agents for problem solving tasks should support WH questions and

answers, WH answers should be accompanied by directions and suggestions. In our

study, while answering, humans tended to answer yes/no more frequently but the agent

should explain the logic behind the code or explanations regarding the decisions made

10

by the agent. HA-M6 mentioned that the agent should give a “more specific,

explanatory approach like a human.” Though generating human-like explanation and

discussions regarding programming may be hard to implement with the current

technology, utilizing the static and dynamic testing approaches, generating visually

explainable solutions can make the agent more human-like. Further, such plausible

explanations can help to build trust of both professionals and students with an agent

and in its solutions [50], while a lack of such explanations may affect losing trust. The

agent should show vulnerabilities of being a machine and expose its limitations to

increase trust with a human partner. When a human shows uncertainty, the agent should

better explain using visualizations and the underlying concepts of how it arrived at a

specific solution. Additionally, the agent should provide better verbal feedback and

present content and code templates to jog the programmer’s memory. For example, to

correct a programmer, the agent should highlight the code segments while giving verbal

and visual suggestions about the code. One approach to generate such explanations

could be using deep learning techniques and training them on WH questions. However,

such training will require tremendous amount of data on pair programming

conversations that currently is unavailable. Further, supporting gender specific problem

solving [37-39], and leadership styles [2] should also be facilitated by a gender-

inclusive agent.

Engaging the human partner with both positive and negative feedback was important

for the success of the task. The feedback from human as well as agent was regarding

(1) status of the code i.e., pass/fail/unexpected results, (2) code reviews i.e.,

correct/incorrect/coding style, (3) idea implemented work/fails, (4) agreement, and (5)

motivation. The positive feedback helped human partners to stay motivated and

engaged in the task, while negative feedback was on mistakes in the code and helped

them to improve quality of the code. Both positive and negative feedback are

important towards problem solving tasks and hence should be used as integral parts of

the conversational agents. Since there were differences in how each gender used

feedback, it will be important that a gender-inclusive agent is able to adapt itself

based on past conversations. This is especially important regarding negative feedback,

which should be dealt more carefully. For-example, if there is a typo, the agent can

correct the typo by itself but if there is a logical error or the problem-solving approach

is wrong, the agent should give suggestions.

One implication for machine learning algorithms is to train them on different genders

(equal number of men, women and non-binary) to capture the diversity of

conversational styles. The differences between the communication styles between

different genders necessitate inclusion of features in the machine learning algorithms

that can capture these differences. Hence, avoiding agents that support misogynistic

ideologies in machine learning [33-36] and support more gender-inclusive machine

learning algorithms.

11

5 Conclusion

We take the first step towards creating a gender-inclusive Alexa-like programming

partner. This paper contributes to understanding the differences between human-human

and human-agent conversations, and how gender effects conversations.

1. RQ1: Communication Styles: Human vs. Agent. Participants in human-human

study gave more directions to complete the task and said more filler words. They

also expressed non-positive feedback and acknowledged their partners’ ideas and

interjected when they thought they could help. They also asked more W/H questions

as they were comfortable with the agent.

2. RQ2: Men’s Communication Styles: Human vs. Agent. Men participants

motivated their human partner through positive feedback and giving direction using

both direct and indirect instructions. Men participants also showed more trust with

the agent.

3. RQ3: Women’s Communication Styles: Human vs. Agent. Women participants

disagreed and apologized more with a human partner while making rapport with

them. They instructed the agent and gave more positive feedback. Hence, women

participants were hesitant to communicate with human partners.

Finally, we discuss the implications for a gender-inclusive conversational agent. The

implications include interface design of such an agent as well as for training machine-

learning algorithms.

References

1. P. Robe, S. K. Kuttal, Y. Zhang, R. Bellamy.: Can Machine Learning Facilitate Remote Pair

Programming? Challenges, Insights & Implications. In: Proceedings of Visual Languages

and Human-Centric Computing, (2020).

2. S. K. Kuttal, K. Gerstner, A. Bejarano.: Remote Pair Programming in Online CS Education.:

Investigating through a Gender Lens. In: Proceedings of Visual Languages and Human-

Centric Computing, (2019).

3. S. K. Kuttal, J. Myers, S. Gurka, D. Magar, D. Piorkowski, R. Bellamy.: Towards Designing

Conversational Agents for Pair Programming: Accounting for Creativity Strategies and

Conversational Styles. In: Proceedings of Visual Languages and Human-Centric

Computing, (2020).

4. S. K. Kuttal, K. Kwasny, B. Ong, P. Robe.: Understand the tradeoffs for substituting

humans with an agent - good, bad, and ugly. Submitted to CHI 2021 found at

https.://drive.google.com/drive/folders/14_0zkttwbVr6pJnB_U4YIReGDLI6mCTX?usp=s

haring

5. P. Robe, S. K. Kuttal.: Designing an interactive pair programming partner submitted to

TOCHI 2021 found at

https.://drive.google.com/drive/folders/1vIOdro0pg8C1jSB42KzYrDRKO0PVhqZ1?usp=s

haring

6. Andreas Stolcke, Noah Coccaro, Rebecca Bates, Paul Taylor, Carol Van Ess-Dykema, Klaus

Ries, Elizabeth Shriberg, Daniel Jurafsky, Rachel Martin, Marie Meteer.: Dialogue act

12

modeling for automatic tagging and recognition of conversational speech. Comput. Linguist.

26, 3, 339-373. (2000)

7. Alina Tugend.: Why is asking for help so difficult? The New York Times (2007).

8. PairBuddy Github, https.://github.com/grubtub19/pairbuddy

9. A. Abraham.: Gender and creativity.: An Overview of Psychological and Neuroscientific

Literature. Brain Imaging and Behavior 10(2), 609-618, (2016).

10. S. Baron-Cohen, R. C. Knickmeyer, M. K. Belmonte.: Sex differences in the brain:

implications for explaining autism. Science, 310(5749), 819–823 (2005).

11. A. LeClair, Z. Eberhart, C. McMillan.: Adapting Neural Text Classification for Improved

Software Categorization. IEEE International Conference on Software Maintenance and

Evolution (ICSME), Madrid, 461-472. (2018)

12. W.-L. Lin, K.-Y. Hsu, H.-C. Chen, J.-W. Wang.: The relations of gender and personality

traits on different creativities.: a dual-process theory account. Psychology of Aesthetics,

Creativity, and the Arts, 6(2), 112–123 (2012).

13. A. Wood, P. Rodeghero, A. Armaly, C. McMillan.: Detecting speech act types in developer

question/answer conversations during bug repair. In Proceedings of the 26th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the Foundations

of Software Engineering (ESEC/FSE 2018), 491-502 (2018).

14. W. Woolley, I. Aggarwal, T. W. Malone.: Collective intelligence and group performance.

Current Directions in Psychological Science, 24.6, pp.420-424 (2015).

15. D. W. Palmieri.: Knowledge management through pair programming, Master's Thesis,

Department of Computer Science, North Carolina State University, Raleigh, NC, (2002).

16. L. Williams, C. McDowell, N. Nagappan, J. Fernald, L. Werner.: Building pair

programming knowledge through a family of experiments. In: 2003 International

Symposium on Empirical Software Engineering, pp. 143–152 (2003).

17. L. Williams, R. Kessler.: Pair Programming Illuminated. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, (2002).

18. C. Barra, B. Crawford.: Fostering creativity thinking in agile software development, Vol.

4799, pp. 415–426 (2007).

19. A. Belshee.: Promiscuous pairing and beginner’s mind: Embrace inexperience, pp. 125 –

131 (2005).

20. A. Cockburn, L. Williams.: Extreme programming examined. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, Ch. The Costs and Benefits of Pair Programming,

pp. 223–243 (2001).

21. T. DeMarco, T. Lister.: Peopleware.: Productive Projects and Teams. Dorset House

Publishing Co., Inc., New York, NY, USA (1987).

22. F. Zieris, L. Prechelt.: On knowledge transfer skill in pair programming. In: Proceedings of

the 8th ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement, ESEM ’14, ACM, New York, NY, USA, 2014, pp. 11:1–11:10.

23. C. McDowell, L. Werner, H. Bullock, J. Fernald.: The effects of pair-programming on

performance in an introductory programming course. In: Proceedings of the 33rd SIGCSE

Technical Symposium on Computer Science Education, pp. 38–42. SIGCSE, ACM, New

York, NY, USA (2002).

24. N. Katira, L. Williams, L. Williams, E. Wiebe, C. Miller, S. Balik, E. Gehringer.: On

understanding compatibility of student pair programmers, SIGCSE Bull. 36 (1), pp. 7–11

(2004).

25. C. McDowell, L. Werner, H. E. Bullock, J. Fernald.: The impact of pair programming on

student performance, perception and persistence. In: Proceedings of the 25th International

13

Conference on Software Engineering, ICSE ’03, IEEE Computer Society, Washington, DC,

USA, pp. 602–607 (2003).

26. L. Williams, E. Wiebe, K. Yang, M. Ferzli, C. Miller.: In support of pair programming in

the introductory computer science course. Computer Science Education, 12, pp. 197–212

(2002).

27. O. Ruvalcaba, L. Werner, J. Denner.: Observations of pair programming: Variations in

collaboration across demographic groups. In: Proceedings of the 47th ACM Technical

Symposium on Computing Science Education, SIGCSE, ACM, New York, NY, USA, pp.

90–95 (2016).

28. L. L. Werner, B. Hanks, C. McDowell.: Pair-programming helps female computer science

students. J. Educ. Resour. Comput. 4 (1), (2004).

29. M. Celepkolu, K. E. Boyer.: Thematic analysis of students’ reflections on pair programming

in cs1. In: Proceedings of the 49th ACM Technical Symposium on Computer Science

Education, pp. 771–776, SIGCSE, ACM, New York, NY, USA (2018).

30. F. J. Rodríguez, K. M. Price, K. E. Boyer.: Exploring the pair programming process:

Characteristics of effective collaboration. In: Proceedings of the 2017 ACM SIGCSE

Technical Symposium on Computer Science Education, pp. 507–512, SIGCSE ’17, ACM,

New York, NY, USA, (2017).

31. Judith B.: Revisiting Bodies and Pleasures: Theory, Culture & Society 16, 2, pp. 11–20

(1999).

32. Candace W. and Don H. Z.: Doing Gender. Gender & Society 1, 2, pp. 125–151 (1987).

33. Margaret B., Anicia P., Charles H., and Noha E.: Finding Gender-Inclusiveness Software

Issues with GenderMag: A Field Investigation. In: Proceedings of the 2016 CHI Conference

on Human Factors in Computing Systems. ACM, pp. 2586–2598 (2016)

34. Gary C., Uri G.: Strong Evidence for Gender Differences in Risk Taking. Journal of

Economic Behavior & Organization 83, 1, pp. 50–58 (2012),

35. Christopher M., Hema S. P., Zoe S.-H., Claudia H., Amber H., Charles H., Logan S., Nupoor

P., Anita S., and Margaret B.: Open-Source Barriers to Entry, Revisited: A Sociotechnical

Perspective. In: Proceedings of the 40th International Conference on Software Engineering,

ACM, pp. 1004–1015 (2018)

36. Arun S., Nicola M.: Cognitive Walkthrough of a Learning Management System with

Gendered Personas. In: Proceedings of the 4th Conference on Gender & IT. ACM, pp. 191–

198 (2018).

37. Susan L.: Gender Bias in Artificial Intelligence: The Need for Diversity and Gender Theory

in Machine Learning. In: Proceedings of the 1st International Workshop on Gender Equality

in Software Engineering, pp. 14–16 (Gothenburg, Sweden) (GE ’18). Association for

Computing Machinery, NewYork, NY, USA,. (2018)

38. E. Arisholm, H. Gallis, T. Dybå, and D. I. K. Sjoberg.: Evaluating Pair Programming with

Respect to System Complexity and Programmer Expertise. IEEE Transactions on Software

Engineering 33, 2, pp. 65–86. (2007)

39. Katrina F., Nickolas F., Rebecca V.: Collaborative learning and anxiety: a

phenomenographic study of collaborative learning activities. In: Proceedings of the 44th

ACM Technical Symposium on Computer Science Education, pp. 227–232 (2013).

40. Virtual Assistant [n.d.]. Amazon Alexa. https.://developer.amazon.com/en-US/alexa

41. Virtual Assistant [n.d.]. Apple Siri. https.://www.apple.com/siri/

42. Virtual Assistant [n.d.]. Google Assistant. https.://assistant.google.com/

43. Social Bot [n.d.]. Cleverbot. https.://www.cleverbot.com/

44. Social Bot [n.d.]. Mitsuku. https.://www.pandorabots.com/mitsuku/

14

45. Social Bot [n.d.]. SAP Conversational AI. https.://www.sap.com/products/conversational-

ai.html

46. Social Bot [n.d.]. Xiaoice AI Assistant. https.://www.digitaltrends.com/cool-tech/xiaoice-

microsoft-future-of-ai-assistants/

47. Andreas S., Noah C., Rebecca B., Paul T., Carol V. E.-D., Klaus R., Elizabeth S., Daniel J.,

Rachel M., and Marie M.: Dialogue act modeling for automatic tagging and recognition of

conversational speech. Comput. Linguist. 26, 3, pp. 339–373 (2000).

48. Jaccard P.: Étude comparative de la distribution florale dans une portion des Alpes et des

Jura. Bulletin de la Société vaudoise des sciences naturelles. 37, pp. 547–579 (1901).

49. Kathryn R. W., Deborah E. W.: Peer Relationships and Collaborative Learning as Contexts

for Academic Enablers. School Psychology Review, 31, 3, pp. 366-377 (2002).

50. S.T. Fiske, E.H.P.P.S.T. Fiske, and S.E. Taylor.: Social Cognition. McGraw-Hill, New York

City, USA.

51. S. K. Kuttal, B. Ong, K. Kwasny, P. Robe.: Trade-offs for Substituting a Human with an

Agent in a Pair Programming Context: The Good, the Bad, and the Ugly. In: Proceedings of

the conference on Human Factors in Computing, CHI (2021).

52. I. Cuadrado, M. M. D. Navas, F. Molero, E. Ferrer, J. F. Morales.: Gender differences in

leadership styles as a function of leader and subordinates sex and type of organization, 2012.

53. T. Yang, H. E. Aldrich.: Whos the boss? explaining gender inequality in entrepreneurial

teams, American Sociological Review, 79 (2), pp. 303–327 (2014).

54. Prashant Baheti, Dr Gehringer, and P. Stott.: Exploring the Efficacy of Distributed Pair

Programming. (2002).

55. Rafael D., Crescencio B.: Analyzing Work Productivity and Program Quality in

Collaborative Programming. In: Proceedings of the 2008 The Third International

Conference on Software Engineering Advances, pp. 270–276, IEEE Computer Society,

Washington, DC, USA (2008).

56. Brian H.: Empirical evaluation of distributed pair programming. International Journal of

Human-Computer Studies, 66, pp. 530–544 (2008).

57. Deborah R. C., Christopher A. H.: Computer Self-Efficacy: Development of a Measure and

Initial Test. MIS Q.19, 2, pp. 189–211. (1995)

58. Clayton L.: Using the "thinking-aloud" method in cognitive interface design. IBM T.J.

Watson Research Center, Yorktown Heights, N.Y (1982).

59. Danielle L. J., Scott D. F.: What use is a backseat driver? A qualitative investigation of pair

programming. In: Proceedings of IEEE Symposium on Visual Languages and Human-

Centric Computing, pp. 103–110, VL/HCC, (2013).

60. Morae 2019. Morae. http.://www.techsmith.com/morae.asp

61. Timothy B., Justine C.: Relational Agents: A Model and Implementation of Building User

Trust. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

(Seattle, Washington, USA)(CHI ’01), 396–403. ACM, New York, NY, USA (2001).

62. Jay B., David B., Oli M., Nick W.: Wizard of Oz experiments and companion dialogues. In:

Proceedings of the 24th BCS Interaction Specialist Group Conference, pp. 117–123. British

Computer Society, (2010).

63. Nils D., Arne J., and Lars A.: Wizard of Oz studies—why and how. Knowledge-based

systems 6, 4, pp. 258–266 (1993).

64. Pierre W., Giovanni C., Yann L.-C., Samuel B., Pierre J., Anne-Sophie R.: Field evaluation

with cognitively-impaired older adults of attention management in the embodied

conversational agent louise. In: 2016 IEEE International Conference on Serious Games and

Applications for Health, pp. 1–8. (SeGAH). IEEE, (2016).

65. Software Application [n.d.]. Facerig. Https.://facerig.com/

https://www.digitaltrends.com/cool-tech/xiaoice-microsoft-future-of-ai-assistants/
https://www.digitaltrends.com/cool-tech/xiaoice-microsoft-future-of-ai-assistants/
http://www.techsmith.com/morae.asp
https://facerig.com/

15

66. Laurel D. R.: Wizard of oz studies in hri: a systematic review and new reporting guidelines.

Journal of Human-Robot Interaction 1, 1, 119–136 (2012).

67. Zahra A., Mohit J., Q. Vera Liao, Justin D. W.: Resilient Chatbots: Repair Strategy

Preferences for Conversational Breakdowns. In: Proceedings of the 2019 CHI Conference

on Human Factors in Computing Systems, Article 254, 12 pages. (Glasgow, Scotland

Uk)(CHI ’19). Association for Computing Machinery, New York, NY, USA (2019).

68. Irene L., Harriet W.: Personification of the Amazon Alexa: BFF or a Mindless Companion.

In: Proceedings of the 2018 Conference on Human Information Interaction & Retrieval, pp.

265–268. (New Brunswick, NJ, USA)(CHIIR ’18). Association for Computing Machinery,

New York, NY, USA (2018).

69. Lee S., Mani S., Sara K., Janet H. W., Keith W.: When the Interface is a Face. Hum.-Comput.

Interact.11, 2, 97–124. (1996).

70. Mohan Z., Julia W., Amanpreet K., Benjamin L.: Assessing the Impact of Virtual Human’s

Appearance on Users’ Trust Levels. In: Proceedings of the 18th International Conference on

Intelligent Virtual Agents, 329–330. (Sydney, NSW, Australia)(IVA ’18). Association for

Computing Machinery, New York, NY, USA (2018).

71. Jonathan G., Ning W., Jillian G., Edward F., Robin D.: Creating Rapport with Virtual

Agents. In: Intelligent Virtual Agents, Catherine Pelachaud, Jean-Claude Martin, Elisabeth

André, Gérard Chollet, Kostas Karpouzis, and Danielle Pelé (Eds.). Springer Berlin

Heidelberg, pp. 125–138. Berlin, Heidelberg, (2007).

72. Dai H., Justine C, Kenji A.: The Role of Embodiment and Perspective in Direction-Giving

Systems. (2010).

73. Ameneh S., Q. Vera Liao, Dakuo W., Rachel K. E. B., Thomas E.: Face Value? Exploring

the Effects of Embodiment for a Group Facilitation Agent. In: Proceedings of the 2018 CHI

Conference on Human Factors in Computing Systems, pp. 1–13. (Montreal QC,

Canada)(CHI ’18).Association for Computing Machinery, New York, NY, USA (2018).

74. Akikazu T., Taketo N.: Situated Facial Displays: Towards Social Interaction. In:

Proceedings of the SIGCHI Conference on Human Factors in Computing Systemsm, pp.

450–455. (Denver, Colorado, USA)(CHI ’95). ACM Press/Addison-Wesley Publishing

Co., New York, NY, USA (1995).

75. Susanne v. M., Elisabeth A., and Jochen M.: The Persona Effect: How Substantial Is It?. In

People and Computers XIII, Hilary Johnson, Lawrence Nigay, and Christopher Roast (Eds.)

pp. 53–66. Springer London, London (1998).

76. Nick Y., Jeremy N B., Kathryn R.: A Meta-analysis of the Impact of the Inclusion and

Realism of Human-like Faces on User Experiences in Interfaces. In: Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, pp. 1–10. (San Jose,

California, USA)(CHI’07). ACM, New York, NY, USA (2007).

77. Saros [n.d.]. Saros Project. https.://www.saros-project.org/

78. Peter H. K., Nathan G. F., Takayuki K., Hiroshi I., Jolina H. R., Rachel L. S., Shaun K. K.:

Design Patterns for Sociality in Human-Robot Interaction. In: Proceedings of the 3rd

ACM/IEEE International Conference on Human Robot Interaction, 97–104. (Amsterdam,

The Netherlands) (HRI ’08). Association for Computing Machinery, New York, NY, USA

(2008).

79. Mohit J., Pratyush K., Ishita B., Q. Vera Liao, Khai T., and Shwetak P.: Farm Chat: A

Conversational Agent to Answer Farmer Queries. Proc. ACM Interact. Mob. Wearable

Ubiquitous Technol. 2, 4, Article 170, 22 pages (2018).

80. Mohit J., Pratyush K., Ramachandra K., Shwetak N P.: Evaluating and informing the design

of chatbots. In: Proceedings of the2018 Designing Interactive Systems Conference, pp. 895–

906. (2018).

https://www.saros-project.org/

16

81. Ewa L. Abigail S.: “Like Having a Really Bad PA" The Gulf between User Expectation and

Experience of Conversational Agents. In: Proceedings of the 2016 CHI conference on

human factors in computing systems, pp. 5286–5297. (2016).

82. Teresa M. A., Michael G. P.: The dynamic componential model of creativity and innovation

in organizations: Making progress, making meaning. Research in Organizational Behavior

36, 157 – 183 (2016).

83. Michael A.: Armstrong’s handbook of reward management practice: Improving

performance through reward (12 ed.). Kogan Page Publishers, (2012).

84. Christopher P C., Jessica M N., Michael T F.: Intrinsic motivation and extrinsic incentives

jointly predict performance: A 40-year meta-analysis. Psychological bulletin 140, 4, 980

(2014).

85. Edward L D., Anja H O., Richard M R.: Self-determination theory in work organizations:

The state of a science. Annual Review of Organizational Psychology and Organizational

Behavior 4, 19–43 (2017).

86. Carmen F., Charlotte P. M., Ernestine S.: The Influence of Intrinsic Motivation and

Synergistic Extrinsic Motivators on Creativity and Innovation. Frontiers in Psychology 10,

137 (2019)

87. M. Day, M. R. Penumala, and J. Gonzalez-Sanchez: Annete: An Intelligent Tutoring

Companion Embedded into the Eclipse IDE. In: 2019 IEEE First International Conference

on Cognitive Machine Intelligence, 71–80. (CogMI). (2019).

88. Iman K., Juergen R., Ying Z.: Spotting Working Code Examples. In: Proceedings of the

36th International Conference on Software Engineering, 664–675. Hyderabad, India,

Association for Computing Machinery, New York, NY, USA (2014).

89. Kisub K., Dongsun K., Tegawendé F. B., Eunjong C., Li L., Jacques K., Yves Le T.: FaCoY:

A Code-to-Code Search Engine. In: Proceedings of the 40th International Conference on

Software Engineering, pp. 946–957. (Gothenburg, Sweden) (ICSE ’18). Association for

Computing Machinery, New York, NY, USA (2018).

90. Haoran N., Iman K., Ying Z.: Learning to rank code examples for code search engines.

Empirical Software Engineering 22, 1, 259–291 (2017).

91. M. Raghothaman, Y. Wei, and Y. Hamadi: SWIM: Synthesizing What I Mean - Code Search

and Idiomatic Snippet Synthesis. In: 2016 IEEE/ACM38th International Conference on

Software Engineering, pp. 357–367. ICSE (2016).

92. R. Zhi, S. Marwan, Y. Dong, N. Lytle, T. W. Price, T. Barnes: Toward Data-Driven Example

Feedback for Novice Programming. In: Proceedings of the 12th International Conference on

Educational Data Mining. (2019).

93. Jörg Spieler. [n.d.].UCDetector. http.://www.ucdetector.org/

94. Dapeng L., Andrian M., Denys P., Vaclav R.: Feature location via information retrieval

based filtering of a single scenario execution trace. In: Proceedings of ASE’07 - 2007

ACM/IEEE International Conference on Automated Software Engineering, 234–243.

(2007).

95. T. Savage, M. Revelle, and D. Poshyvanyk: FLAT3: feature location and textual tracing

tool. In: Proceedings of 2010 ACM/IEEE 32nd International Conference on Software

Engineering, Vol. 2. pp. 255–258. (2010).

96. S. Ali, L. C. Briand, H. Hemmati, R. K. Panesar-Walawege: A Systematic Review of the

Application and Empirical Investigation of Search-Based Test Case Generation. IEEE

Transactions on Software Engineering 36, 6, 742–762 (2010).

97. Meiliana, Irwandhi Septian, Ricky Setiawan Alianto, Daniel, Ford Lumban Gaol.:

Automated Test Case Generation from UML Activity Diagram and Sequence Diagram using

Depth First Search Algorithm. Procedia Computer Science 116, pp. 629 – 637 (2017).

http://www.ucdetector.org/

17

http.://www.sciencedirect.com/science/article/pii/S1877050917320732 Discovery and

innovation of computer science technology in artificial intelligence era: The 2nd International

Conference on Computer Science and Computational Intelligence (ICCSCI 2017).

98. Matheus M., Erica S., Andre E., Nandamudi V.: Analyzing graph-based algorithms

employed to generate testcases from finite state machines. (2019).

99. P. Rane: Automatic Generation of Test Cases for Agile using Natural Language Processing.

(2017).

100. Alex G., Bastiaan H., Johan J., L. Thomas v. B.: Ask-Elle: an Adaptable Programming Tutor

for Haskell Giving Automated Feedback. International Journal of Artificial Intelligence in

Education. 27, (2016).

101. Tim B.: Change by Design: How Design Thinking Transforms Organizations and Inspires

Innovation. Harper Business. (2009).

102. Berland Edelman and Inc. 2010. Creativity and education.: Why it matters

http.://www.adobe.com/aboutadobe/pressroom/pdfs/Adobe_Creativity_and_Education_W

hy_It_Matters_study.pdf, last accessed 2019/09/18

103. Marvin L.: Effective problem solving. Prentice Hall. (1988).

104. Zhiqiang L., Dieter J S.: Teaching creativity in engineering. International Journal of

Engineering Education 20, 5, 801–808 (2004).

105. George Polya.: How to solve it.: A new aspect of mathematical method. Vol. 85. Princeton

university press. (2004).

106. Tony W., Robert A C.: Creating innovators: The making of young people who will change

the world. Simon and Schuster. (2012).

107. Wayne A W.: How to solve problems: Elements of a theory of problems and problem

solving. WH Freeman San Francisco. (1974).

108. Yong Z.: World class learners: Educating creative and entrepreneurial students. Corwin

Press, Thousand Oaks, California, USA (2012).

109. Mengping T.: Learning behaviours of low-achieving children’s mathematics learning in

using of helping tools in a synchronous peer-tutoring system. Interactive Learning

Environments 25, 2, 147–161 (2017)

110. J.P. Guilford.: Intelligence, Creativity, and Their Educational Implications. R. R. Knapp.

(1968) https.://books.google.com/books?id=WE8kAQAAMAAJ

111. T. Robertson, Shrinu P., Margaret B., Curtis C., Joe R., Laura B., Amit P.: Impact of

Interruption Style on End-User Debugging. ACM Conference on Human Factors in

Computing Systems, 287–294 (2004).

112. Aaron W., Margaret B., Laura B., Orion G., Ledah C., Curtis C., Mike D., Gregg R.:

Harnessing Curiosity to Increase Correctness in End-User Programming. 305–312 (2003)

113. Dominique K. Ludovic L. B.: The Influence of Reference Acceptance and Reuse on

Conversational Memory Traces. Journal of experimental psychology. Learning, memory,

and cognition 4, (2014).

114. Dominique K., Ludovic L. B., Christine R.: Explicit feedback from users attenuates memory

biases in human-system dialogue. International Journal of Human-Computer Studies 97, 77

– 87 (2017). http.://www.sciencedirect.com/science/article/pii/S1071581916301045

115. Dominique K., Christine R., Ludovic L. B.: Generating References in Naturalistic Face-to-

Face and Phone-Mediated Dialog Settings. Topics in Cognitive Science, 8, (2016).

116. R. Sharma, S. Gulia, and K. K. Biswas: Automated generation of activity and sequence

diagrams from natural language requirements. In: 2014 9th International Conference on

Evaluation of Novel Approaches to Software Engineering, 1–9. ENASE, (2014).

117. TeamViewer 20219, Teamviewer. https.://www.teamviewer.com/

118. Eclipse 2019, Eclipse Foundation https.://www.eclipse.org/ide

http://www.adobe.com/aboutadobe/pressroom/pdfs/Adobe_Creativity_and_Education_Why_It_Matters_study.pdf
http://www.adobe.com/aboutadobe/pressroom/pdfs/Adobe_Creativity_and_Education_Why_It_Matters_study.pdf
https://books.google.com/books?id=WE8kAQAAMAAJ
http://www.sciencedirect.com/science/article/pii/S1071581916301045
https://www.teamviewer.com/

	1 Introduction
	2 Methodology
	2.1 Human-Human Study
	2.2 Human-Agent Study
	Wizard of Oz
	Agent Design
	The agent’s design was inspired by multi-disciplinary research on human-computer interactions, conversational agents, human-robotic interactions, education, intelligent tutoring systems, psychology, and management science.
	Study Design

	2.3 Analysis of Data
	Table 1. The dialogue acts and their definitions as used to code the study transcriptions.

	3 Results
	More filler words with humans vs. fully articulated thoughts with an agent.
	Asked more WH Questions from the agent vs. human
	RQ2: How do men's communication styles differ when interacting with a human vs. an agent?

	4 Discussions
	5 Conclusion
	References

