Trade-offs for Substituting a Human with an Agent in a Pair
Programming Context: The Good, the Bad, and the Ugly

Sandeep Kaur Kuttal
sandeep-kuttal@utulsa.edu
The University of Tulsa
Tulsa, Oklahoma

Katherine Kwasny”*
ksk2722@utulsa.edu
The University of Tulsa
Tulsa, Oklahoma

ABSTRACT

Pair programming has a documented history of benefits, such as in-
creased code quality, productivity, self-efficacy, knowledge transfer,
and reduced gender gap. Research uncovered problems with pair
programming related to scheduling, collocating, role imbalance,
and power dynamics. We investigated the trade-offs of substituting
a human with an agent to simultaneously provide benefits and
alleviate obstacles in pair programming. We conducted gender-
balanced studies with human-human pairs in a remote lab with 18
programmers and Wizard-of-Oz studies with 14 programmers, then
analyzed results quantitatively and qualitatively. Our comparative
analysis of the two studies showed no significant differences in pro-
ductivity, code quality, and self-efficacy. Further, agents facilitated
knowledge transfer; however, unlike humans, agents were unable
to provide logical explanations or discussions. Human partners
trusted and showed humility towards agents. Our results demon-
strate that agents can act as effective pair programming partners
and open the way towards new research on conversational agents
for programming.

CCS CONCEPTS

« Human-centered computing — User studies.

KEYWORDS

Pair programming, conversational agents, avatars, empirical evalu-
ation

ACM Reference Format:

Sandeep Kaur Kuttal, Bali Ong, Katherine Kwasny, and Peter Robe. 2021.
Trade-offs for Substituting a Human with an Agent in a Pair Programming
Context: The Good, the Bad, and the Ugly. In CHI Conference on Human
Factors in Computing Systems (CHI °21), May 8-13, 2021, Yokohama, Japan.
ACM, New York, NY, USA, 20 pages. https://doi.org/10.1145/3411764.3445659

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CHI 21, May 8-13, 2021, Yokohama, Japan

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8096-6/21/05...$15.00
https://doi.org/10.1145/3411764.3445659

Bali Ong*
bao2656(@utulsa.edu
The University of Tulsa
Tulsa, Oklahoma

Peter Robe
pjrl44@utulsa.edu
The University of Tulsa
Tulsa, Oklahoma

1 INTRODUCTION

Pair programming is based on the tenet “two heads are better than
one” [189]. Two programmers solve a problem together, either col-
located or remotely. One partner is the driver who actively creates
code and controls the keyboard and mouse; the other partner is
the navigator who constantly reviews the driver’s work, proposes
suggestions, and poses clarifying questions [129, 180, 183]. This
paradigm fosters active learning, where knowledge is gained by
doing, in comparison to the formal tutor-tutee relationships in
intelligent tutoring systems. The benefits of pair programming
are well established and include increased code quality, efficiency,
knowledge transfer, and self-efficacy, as well as a reduced gender
gap [15, 43, 47, 86, 140, 197]. Pair programming also helps increase
retention rates [131], even for non-computer science majors [126].

However, researchers have also reported limitations with pair
programming, such as difficulties scheduling and collocating pairs
[68], student resistance to pairing [179, 185], and dependencies on
their peers’ programming abilities [56]. Furthermore, establishing a
synergistic collaboration between pairs can be challenging as they
might be affected by their relational interactions [87, 166] or may
be predisposed to negative stereotypes [156]. These issues are often
exacerbated in remote collaboration and learning.

To address these issues, we conjecture that replacing one human
member of the pair with a conversational agent can help leverage
the strengths provided by each member in a pair programming
scenario. Agents, such as Apple’s Siri [7], Google Assistant [63],
and Amazon Alexa [6] have positively transformed our day-to-day
lives. We conjectured that a pair programming conversational agent
can bring their benefits into the programming domain.

The goal of this research is to investigate the feasibility of such
a conversational agent as a partner in a pair programming context.
Towards this end, we formulated the following research questions:

e RQ1: Can we continue the benefits of pair programming by
replacing a human programmer with an agent?

e RQ2: What kind of knowledge is transferred between human-
human and human-agent pairs?

e RQ3: Do human programmers consider the agent as their
partner?

To explore these questions, we conducted a human-human study
with 18 university students in a remote lab setting with gender-
balanced pairs (3 man-man, 3 woman-woman, and 3 man-woman).

https://doi.org/10.1145/3411764.3445659
https://doi.org/10.1145/3411764.3445659

CHI ’21, May 8-13, 2021, Yokohama, Japan

This study was followed by a Wizard of Oz study with 8 university
students (4 men and 4 women) and 6 professional programmers (3
men and 3 women). We used quantitative and qualitative analysis to
measure the similarities and differences between the human-human
and human-agent studies.

2 BACKGROUND AND RELATED WORK ON
PAIR PROGRAMMING

Pair programming is a practice in which two programmers collabo-
rate on the analysis, design, programming, and testing of software.
One member of the pair is the designated driver, who actively cre-
ates code and controls the keyboard and mouse; their partner is the
navigator, who constantly reviews the keyed data to identify tactical
and strategic deficiencies. These include erroneous syntax and logic,
misspellings, and implementations that do not map to the design.
The two of them switch roles when necessary. [180, 186]. Collabo-
ration is an effective tool for teaching introductory programming.
Students who code in pairs produce better programs, complete
courses at higher rates, and perform equally on final exams when
compared to students who have programmed independently [112].

Remote pair programming, also known as distributed pair pro-
gramming, is comparable to collocated pair programming in regards
to student performance, code quality, and productivity [167]. The
COVID-19 global pandemic has limited the ability to collocate, forc-
ing programmers to shift towards remote pair programming. Fortu-
nately, remote pair programming is still a viable option - research
has found that remote pair programming has high satisfaction rates
among students [167].

Pairing has proven to be a more effective learning and motiva-
tional technique than individual programming [30, 112, 127]. Re-
search has shown that pair programming improves design and code
quality, reduces errors, and strengthens communication among
teams [50, 66, 98, 113, 114, 122, 125, 184, 186]. In an educational
setting, pair programming enables students to understand concepts
and organize their own knowledge as a result of interactions and
alternating roles [175]. Furthermore, pair programming can help
teach professionals the specifics of a project and increase overall
productivity [198].

Pair programming also improves the self-efficacy (confidence
in the ability to perform a particular task) of the participants in-
volved [125]. Programmers with high self-efficacy tend to be more
persistent and flexible in their problem solving [13]. They are also
more likely to perform better while programming [113] and are
even happier [181]. Additionally, pair programming reduces the
gender gap by increasing female students’ confidence in program-
ming and encouraging them to continue pursuing computer science
(141, 175].

Although research has a shown positive correlation between
pair programming and a reduced gender gap in computer science,
women have still raised concerns about partnering with men. As
Ying et al. [191] found, women were more likely to feel insecure
about their role when pair programming with men. On the other
hand, men were likely to see themselves as more competent or
prepared. Although pairs with a woman were more likely to finish
an assignment in class, women continued to rate their confidence
lower, particularly when paired with a man [79]. Currently, only 18%

Kuttal, et al.

of computer science undergraduate students are women, and this
number is reduced to 10% in the workplace [158]. This imbalance
makes it difficult for women to find a pair programming partner
they feel comfortable with.

The positive effects of pair programming on retention and knowl-
edge transfer enable programmers to apply learned knowledge to
new programs [27, 28, 37, 104, 105, 113, 129, 131]. Studies show that
pairs learned topics better [181], narrowed their gaps in knowledge
[8, 36], exchanged project-related and general knowledge [132],
and discovered new tools [121]. Pairs also exhibited little indication
that interruptions from their partner disrupted their flow [98].

The most important part of pair programming is not the in-
dividual skill or personality of the programmers, but rather how
they work together [198]. Pair programming (collocated) measured
higher in both learning gains and student satisfaction compared to
alternative collaboration methods, demonstrating the importance
of working on shared code and collaboration [29]. Pair program-
ming has also benefited students in other domains, like data science
and engineering [142].

Despite the significant positive impact of pair programming, im-
plementation challenges arise due to difficulties in scheduling and
collocating pairs [68]. Further complicating matters, some individ-
uals desire to work alone because they do not want to be “slowed
down” by their partner [182]. In addition, successfully completing
a task using this process depends on the pairs’ programming abil-
ities [55]. We conjecture that introducing an agent can eliminate
these challenges, because programmers would not depend on their
colleagues’ schedules, locations, and abilities. Our study will enrich
the understanding of the pair programming process involving a
human-agent pair, as well as the feasibility of introducing such an
agent for pair programming.

3 HUMAN-HUMAN STUDY

First, we conducted a human-human study in order to analyze the
interactions between two humans in a pair programming environ-
ment. The details of the study were as follows:

3.1 Participants

We recruited 18 computer science students on first-come-first-serve
basis. All participants had some level of experience with the Java
programming language. Table 1 details the general demographics
of our study participants. As an incentive, participants were given
a $20 Amazon gift card.

We placed the participants into nine gender balanced pairs - 3
man-man, 3 woman-woman, and 3 man-woman. Based on the back-
ground questionnaire, we identified only binary genders (men and
women) according to the self-identification of each participant’s
gender [26, 176]. Gender balanced data is crucial for (1) discovering
gender biases in the interface designs [22, 33, 116, 149], (2) avoid-
ing agents that support ideologies in machine learning that are
unfavorable towards women [100], (3) supporting gender specific
problem solving [8, 52], communication techniques, and leadership
styles [87]. Also note that various factors such as ethnicity, race,
and sexual orientation can impact how programmers interact with
each other. Although there are various minority groups in computer

Trade-offs for Substituting a Human with an Agent in a Pair Programming Context: The Good, the Bad, and the Ugly

Table 1: General Demographics of Participants in Human-
Human Study

Pair# | Gender Level Age Exp crience
Prog. | Pair-Prog.

HH1-M1 Man Junior 19-23 | 2 Years Yes
HH1-M2 Man Sophomore | 19-23 | 2 Years Yes
HH2-M3 Man Senior 19-23 | >4 Years No
HH2-M4 Man Freshman | 19-23 | 3 Years No
HH3-M5 Man Freshman | 19-23 | 4 Years No
HH3-W1 | Woman Senior 19-23 | 3 Years No
HH4-W2 | Woman Junior 19-23 | 2 Years No
HH4-W3 | Woman Senior 19-23 | 2 Years Yes
HH5-W4 | Woman Masters 30-40 | 2 Years No
HH5-W5 | Woman Masters 19-23 | 2 Years No
HH6-M6 Man Senior 19-23 | 4 Years No
HH6-W6 | Woman Senior 19-23 | 3 Years Yes
HH7-W7 | Woman Senior 19-23 | 2 Years No
HH7-W8 | Woman Junior 19-23 | 2 Years Yes
HH8-M7 Man Senior 19-23 | 4 Years No
HHS8-W9 | Woman Junior 19-23 | 3 Years No
HH9-M8 Man Freshman | 19-23 | 3 Years No
HH9-M9 Man Junior 19-23 | 2 Years Yes

science, we focused on gender due to the well-documented negative
effects of the gender gap in computer science.

We refer to pairs with the label HH-X, where X is the gender
of the participant. For example HH3-M5 and HH3-W1 refers to
the man (fifth man participant overall) and woman (first woman
participant overall) of Pair 3.

3.2 Study Design

While the study was conducted in a lab setting, it emulated a remote
pair programming environment with the participants seated in sep-
arate rooms. Remote pairing was used (1) to create an environment
similar to that of our human-agent study and (2) provide benefits
comparable to collocated pair programming [11, 49, 67].

Before the study, each participant completed a consent form,
background questionnaire, and pre-self-efficacy questionnaire [38].
Instructional video tutorials were given to the participants to teach
them concepts of test-driven development (e.g., writing test cases,
implementing code, and refactoring code), pair programming con-
cepts (e.g., driver and navigator roles), and think-aloud study (e.g.,
vocalize any thoughts and feelings as they perform their tasks
[103]). The pairs communicated remotely via Teamviewer [163]
and used the Eclipse IDE [74] to complete their task.

Prior to the study, the participants were given a warm-up pilot
task for password validation. This task allowed for pair jelling — a
period of time that allows them to adjust to the pairing. This practice
is noted to help pairs work more efficiently in pair programming
[98].

All participants implemented a tic-tac-toe game in Java, and
completed the task in 40 minutes to avoid any fatigue. In tic-tac-toe,
two players take turns placing marks in a 3x3 grid until either one
player successfully gets three consecutive marks, or the win condi-
tion becomes impossible, resulting in a tie. We used tic-tac-toe due

CHI ’21, May 8-13, 2021, Yokohama, Japan

to its relative simplicity - even participants who were unfamiliar
with the game could understand the rules. An implementation for a
board and the ability to place marks were provided, but participants
needed to write test cases and methods in order to complete the
game. User stories and acceptance criteria for the task were pro-
vided regarding vertical/horizontal/diagonal wins, taking
turns, a full board, and a tie. Throughout the duration of the
task, participants determined their own roles as a driver and navi-
gator. Study sessions were recorded using the Morae screen capture
tool [164].

Once the task was finished, participants were asked to complete
post-questionnaires on self-efficacy and their pair programming
preferences. These questionnaires helped to triangulate (compare
and attempt to refute) the results of our qualitative and quantitative
analyses.

3.3 Data Analysis

Video data, audio data, and screen interactions of participants were
collected as transcripts, which were analyzed using a mix of qualita-
tive and quantitative measures, including qualitative methods from
Grounded Theory [60] (e.g., Corbin and Strauss variant [159]). Cen-
tral to qualitative analysis is coding the data — identifying points
where certain concepts/phenomena are apparent and marking them
accordingly. We coded points based on programmers’ utterances to
identify key concepts and phenomena via an iterative, open-coding
process [90, 145]. This was used to analyze pair behavior. Thematic
analysis [20] was used to organize qualitative data into themes that
related back to the research questions. For quantitative analyses,
we measured productivity, code quality, differences in self-efficacy
(before and after the task), and post-questionnaire responses on
their pair programming preferences.

The transcribed data from the qualitative study was coded for
information such as timestamps, the speaker, their gender, the
current driver, type of expression, dialogue relevance to the task,
type of knowledge transferred, interruptions, instances of ignoring
a partner, collective monologues, and self-disclosure dialogue. The
codes were assigned to the utterances of each participant. Three
researchers independently coded 20% of the transcripts and reached
an agreement on 90% of the coded data by calculating inter-rater
reliability using the Jaccard measure [75]. The remaining transcripts
were split between the two researchers, who coded them separately.

4 HUMAN-AGENT STUDY

To analyze interactions between a human and an agent, we con-
ducted a Wizard of Oz lab study. The study design, as well as the
data analysis, was similar to our previous human-human study
(Sections 3.2 and 3.3) for conducting comparative analysis.

4.1 Wizard of Oz Study

In a Wizard of Oz study, participants interact with a computer
agent that is actually controlled by a human “wizard” behind the
scenes. Simulating an agent allows for the rapid-prototyping of
technically demanding interfaces that have yet to be created, [186]
allowing a product’s functionality to be iterated before it is later
refined based on testing [99, 188]. Wizard of Oz studies are used
to develop user-friendly natural-language interfaces, consider the

CHI ’21, May 8-13, 2021, Yokohama, Japan

Wizard of 02" Eace fAvatar puppeting

i— "

Webcaim

a—

o
U

Avatar

Participant 1

Frogramimer

Participant 2

FHHHHHHHH

Figure 1: The design of the Wizard of Oz study. Participant 1
on the left interacts with the wizard (a “PairBuddy”) on the
right.

os Run Window Help

Gvis vihvilvtooavo v

1 TiclacloeGamejava =) *TiclacloeGamelests java

2 public class TicTacToeGame {

private char[][] board;
public char currentPlayerMark;

public TicTacToeGame() { Eg
board = new char[3][3];
currentPlayertlark = 'x';
initializeBoard();

Set/Reset the board back to all empt
public void initializeBoard() {
Loop through rows
for (int i = @; i < 3; i++) {

For (int G o= @ G ¢ 30) 4

Figure 2: A screenshot of the agent’s interface from the Wiz-
ard of Oz study. Participants saw the agent’s facial expres-
sions in the form of an avatar and interacted with it via text
and voice communication as they programmed in the IDE.

unique qualities of human-agent interactions [41], and study user
interactions with conversational agents [17, 18, 173].

Our study followed a basic Wizard of Oz design as illustrated
in Figure 1. Participants sat at a computer to pair program with
the agent and used the Saros plugin for the Eclipse IDE to facili-
tate remote collaboration. Participants interfaced with the agent
who was embodied by a 3D avatar (Figure 2) using the Facerig
embodiment software [160]. Facerig supported lip-synchronization
to the agent’s voice generated via Google Text-to-Speech [62]. Each
participant’s face, voice, and screen were shared with two wizards
(Participant 2 in Figure 1). Our agent was collaboratively controlled
by a graduate students with 5 years of programming experience
and an undergraduate with 3 years experience. They maintained
the illusion of the agent by adhering to a templated script of dia-
logue options. The script helped to avoid any inconsistency in the
wizard’s behavior when responding to different participants. Skype,
Discord, and Google Hangouts were used to facilitate video and
audio communication with participants.

The wizards simulated the components of a conversational
agent (e.g., speech recognition, intent understanding, dialogue state

Kuttal, et al.

tracking, dialogue policy, response generation) using a constrained
Wizard of Oz protocol [137]. If a participant were to ask, “How to
write code for the win game?”, the wizard would identify their intent
as “implementation help” and choose the appropriate templated
response from the wizard’s script: ‘I can make a recommendation
from GitHub, would you like me to do so?” The wizards controlled
both the quantity and quality of our agent’s contributions to pro-
vide equal benefit to all participants. However, some participants
may have received less help, since they denied the agent’s requests
to drive or ignored suggestions.

4.2 Agent Design

In the human-agent study, we simulated a realistic implementation
of a pair programming partner agent. This was followed by design-
ing the embodiment (i.e., avatar and voice), as well as a script for the
wizard’s dialogue based on related literature. Table 2 shows some
of the features we implemented for our agent with the relevant
sources. The design was inspired by multi-disciplinary research
on human-computer interactions, conversational agents, software
engineering, human-robotic interactions, education, intelligent tu-
toring systems, psychology, and management science. Due to the
limited available space within this paper, the iterative approach to
developing the agent’s design decisions are detailed at [138].

4.2.1 Interactions Using Avatar/Voice/Text/IDE. Our agent inter-
acted with its programming partners using features such as a dy-
namic 3D avatar [97, 108, 157, 194], voice [10], and text chat that
enhanced human-computer interactions. An avatar makes the in-
terface more human-like [157], thereby improving understanding,
engagement, and trust in novice programmers [17, 64, 69, 147, 162,
170, 190]. The programmer could also choose the avatar’s gender
[19, 35, 87, 165]. For our study, we supported the two most common

Table 2: Sample Design Guidelines for the Agent.

Having an avatar [97, 108, 157, | Clearly explaining the reason
194] for yes/no decisions [97]

Allowing gender selection:
man vs. woman avatar [19, 35,
165]

Expressing uncertainty with
verbal and non-verbal cues [10,
87, 97]

Having a voice [25]

Redirecting suggestions [97]

Attributing success to the
group and taking responsibil-
ity for mistakes [83, 85]

The WH (who/what/where/
why/how) question’s answers
should be accompanied by di-
rections and suggestions [97]

Adapting activity based on
partner’s ability [97]

Making rapport by greeting
[84] and motivational dialogues
[5, 31, 45, 53]

Giving indirect instructions
politely. Giving direct instruc-
tion as a backseat driver [97]

Apologizing when the answer
is unknown or a mistake is
made [97]

Clearly acknowledging sug-
gestions [97]

Supporting verification after
every phase of creativity [97]

Showing agreement when a
human partner is correct [97]

Giving feedback related to
code quality and productivity
with a positive tone [97]

Trade-offs for Substituting a Human with an Agent in a Pair Programming Context: The Good, the Bad, and the Ugly CHI °21, May 8-13, 2021, Yokohama, Japan

genders: man and woman. The agent facilitated communication
primarily via voice to reduce context switching and increase inter-
actions. Participants communicated with the agent directly through
speaking and the agent responded with voice-synthesized messages.
Text communication was reserved exclusively for sending links and
pictures. The agent directly edited the participant’s code using the
Saros plugin [154] for Eclipse.

4.2.2 Making Rapport with Human Partner. Our agent was de-
signed to build rapport with participants, similar to human-human
pairs. It greeted and introduced itself to its human partner at the
beginning of each study [84]. Further, it attributed success to the
group and took personal responsibility for its mistakes [83, 85].
To increase participants’ trust [10, 76, 77, 109], the agent showed
uncertainty about its work and asked for verification. For example,
after adding the code through the IDE, the agent said “This might
do the trick. I'm not sure though.” Motivation is known to have a
substantial effect on a programmer’s performance and productivity
[5, 31]. Designing extrinsic motivation can help individuals increase
their creative and innovative outcomes [9, 45, 53]. The participants
were encouraged upon both successes and failures with motiva-
tional statements like “Yay, we did it!” and “T’'m not sure what we’re
doing here, but we can always test it.”

4.2.3 Acting as a Programmer. Our agent’s interactions and capa-
bilities were informed by a wide range of research on automated
programming techniques. The agent’s ability to contribute code
(driver) and give feedback (navigator) were based on automated
code/feedback techniques [42, 196] that require a dataset of past
solutions and search-based feedback [88, 89, 124, 133]. The agent
was designed with the ability to identify unnecessary code - in-
cluding variables, functions, and classes - based on automated tools
like UCDetector [155]. If the participant asked for the location of
something within the code, our agent’s ability to respond was based
on both static [110, 143] and dynamic feature location techniques
[106, 143]. For specifically generating test cases, the techniques to
generate them automatically (i.e., without past solutions) were ei-
ther code search algorithms [115, 118] or converting user stories to
scenarios, then to test cases [3, 134]. Our agent could also identify
where code was missing, a technique investigated by Gerdes et al.
[58] in the programming language Haskell.

4.2.4 Supporting Creativity: Creativity is vital to a programmer’s
success [51, 172, 195], especially when solving open-ended prob-
lems [21, 43, 102, 107, 130, 178]. To foster diverse thinking, our agent
was designed to offer abstract code skeletons/templates (e.g., empty
loops and empty function definitions), code examples, and alterna-
tive implementations. We then designed questions that encouraged
programmers to consciously consider alternative solutions. This
design decision was motivated by Tsuei’s finding [168] that imper-
fect guidance about problem-solving strategies and programming
concepts enhances creativity and encourages participants to ex-
plore new ideas. Since an agent cannot ideate, creativity theory
suggests producing a plethora of ideas in order to arrive at creative
ones with a concept called ideational fluency [65]. For example, the
agent asked, “Are there other ways we could do this?”

4.2.5 Driver/Navigator Communication Styles. Our agent apolo-
gized for incorrect or unknown answers, expressed uncertainty via

Table 3: General Demographics of Participants in Human-
Agent Study

Participant # | Gender Level Age Experlel}ce
Prog. | Pair-Prog.
HA-W1 Woman Junior 19-23 | 3 Years No
HA-M2 Man Junior 19-23 | 2 Years Yes
HA-M3 Man Sophomore | 19-23 | 2 Years No
HA-W4 Woman Junior 19-23 | 2 Years No
HA-W5 Woman Senior 19-23 | 3 Years No
HA-M6 Man Senior 19-23 | 3 Years No
HA-M7 Man Sophomore | 19-23 | 3 Years No
HA-M838 Man Freshman | 19-23 | >4 Years No
HA-W9 Woman Masters 30-40 | >4 Years No
HA-M10 Man Masters >41 >4 Years No
HA-W11 Woman Junior 19-23 | 2 Years Yes
HA-M12 Man Masters 30-40 | >4 Years Yes
HA-W13 Woman Masters 30-40 | 2 Years No
HA-W14 Woman Senior 19-23 | <1 Year Yes

verbal and non-verbal cues [10, 87, 97], and gave WH (who/what/
when/why/where/how) answers accompanied by directions and
suggestions. The agent’s responses were tuned to its human part-
ner’s performance and gave just-in-time help when needed or ne-
gotiated interruptions (i.e., when a human partner explicitly asks
for feedback in the context of the IDE) [139, 187]. Additionally, our
agent provided superior verbal feedback and presented content
and code templates to jog the programmer’s memory. For example,
to correct a programmer, it highlighted code while giving both
verbal and visual suggestions; doing so addressed a limitation in
human-agent dialogues where self-presentation bias induces a lack
of memory retention on the part of humans [91-93, 148].

4.3 Participants

We recruited 14 participants (7 men and 7 women) via snowball sam-
pling, advertisements on social platforms (Facebook and Twitter),
and a recruitment site (Upwork). Eight of them were university stu-
dents (4 men and 4 women) and six were professional programmers
(3 men and 3 women). Table 3 gives the detailed demographics of our
participants. Since the study was conducted during the COVID-19
pandemic, we conducted virtual lab studies. The choice of a vir-
tual lab allowed us to recruit participants from various time zones
throughout the country instead of regional participants only. Simi-
lar to the human-human study participants, student participants
were incentivized with a $20 Amazon gift card and professionals
with a $40 Amazon gift card. The professionals performed the same
task, but were given a larger incentive to increase participation.

We refer to the participants in the human-agent study with
the label HA-X#, where X is either W or M. For example, HA-W5
refers to human-agent participant 5, a woman, and HA-M2 refers
to participant 2, a man.

4.4 Study Design

The study design was similar to the human-human study (Section
3.2), except: (1) the participant completed the task with our agent
and were given an instructional tutorial on the agent itself, (2) pair

CHI ’21, May 8-13, 2021, Yokohama, Japan

Table 4: Sample Interview Questions

Question

Did you enjoy working with PairBuddy?

Do you the trust computer? If given a choice in the future, who
will you trust more: human or computer?

When PairBuddy wrote code (a.k.a. was the driver) did you trust
its correctness?

What was your trust level relative to how you would trust a human?
Why?

Did you trust PairBuddy’s advice as a navigator?

What was your trust level relative to how you would trust a human?
Why?

Did you prefer the first avatar or the second avatar?

Did you prefer the first voice or the second voice?

When working with agents, do you prefer a male or female role?

Did you learn anything from PairBuddy?

jelling was not incorporated, and (3) the agent was set to change gen-
der presentation halfway through each study. We counter-balanced
the gender presentation (i.e., whether it was initially presented
as man or woman) so that it was equally split among the study
sessions.

Further, the study was followed by interview questions to collect
the participants’ thoughts, feelings, experiences, and preferences
regarding our agent. Table 4 gives the sample list of interview
questions.

The IRB required we reveal our work as a deception study, so
the participants were asked to sign a consent form after the task
completion.

4.5 Data Analysis

We analyzed the data in the Wizard of Oz study under the same
criteria discussed in the human-human study (Section 3.3). Three
researchers independently coded 20% of the transcripts and reached
an agreement on 93% of the coded data by calculating inter-rater
reliability using the Jaccard measure [75]. The remaining transcripts
were split among the three researchers. This helped us compare
and contrast how a human worked with another human versus an
agent; the results were triangulated with interviews and survey
data.

5 LIMITATIONS

The sample size of 9 pairs for human-human and 14 pairs for human-
agent study may be considered small, especially for quantitative
analysis. Although the study was gender balanced, we investigated
only two genders, men and women, since we did not have any
participants of other genders. However, men and women are at
opposite ends of the gender spectrum, which provided some in-
sight into gender differences. Although our results showed that
our women participants enjoyed an agent more than men partici-
pants, our limited sample data set cannot confirm these findings.
This needs further investigation to ensure that an agent can benefit
men and women equally. Note that there are a variety of factors
other than gender that may explain the differences in our results,

Kuttal, et al.

including participants’ personalities, cultural backgrounds, and pro-
gramming language preferences. The COVID-19 pandemic forced
us to conduct virtual lab studies that may differ from collocated
studies, but we tried to keep the design as close to the human-
human studies as possible — even the human-agent study script
was kept close to that of the human-human study.

A different agent design may produce differing results. Though,
we considered the main features that a pair programming agent
should incorporate, such as negotiated interruptions, a human-like
embodiment, divergent thinking, fixing bugs, and adding code. Our
results suggested a promising future for pair programming agents.

We only used one simple task, a tic-tac-toe game, to understand
the feasibility of a pair programming agent, whereas higher-level
programming problems in the industry can be incredibly complex.
This research takes the first step towards understanding whether
introducing an agent to pair programming is feasible. Our study
shows there is potential to increase the effectiveness and efficiency
of learning programming concepts with a conversational agent.

6 RESULTS

To investigate the trade-offs of substituting an agent in a pair pro-
gramming context, we compared and contrasted the transcripts, pro-
ductivity, code quality, and questionnaire results from the human-
human and human-agent studies. The results were triangulated
with interviews.

In this section, we discuss each research question along with our
findings. Each finding is accompanied by relevant key takeaways.

6.1 RQ1: Can we continue the benefits of pair
programming by replacing a human
programmer with an agent?

Pair programming is known to increase code quality, productivity,
and self-efficacy, as well as decrease the gender gap. To investigate
the similarities and differences between human-human and human-
agent interactions, we measured: (1) productivity — the progress
made by an individual, (2) code quality — the correctness of the
code produced, (3) self-efficacy — an individual’s confidence in their
ability to perform a particular task, and (4) gender differences for
men and women. Finally, we triangulated the findings for RQ1
with the post-questionnaires of participants’ pair programming
preferences in both studies.

We conducted two analyses. The first was a quantitative analysis
to find the significance of the differences between human-human
and human-agent interactions using a Wilcoxon signed-rank test. A
Wilcoxon signed-rank test is a non-parametric statistical hypothesis
test used to compare two samples when the samples’ means cannot
be assumed to be normally distributed [150]. The second was a
qualitative analysis to gain insight into the similarities and differ-
ences of human-human and human-agent interaction. As noted,
these results were triangulated with interviews.

(1) Productivity

Productivity was a measure of how far each pair progressed in
the task within the 40 minute time limit in both the human-human
and human-agent studies. The task was measured on a 100-point
scale; these points were divided equally between test cases and

Trade-offs for Substituting a Human with an Agent in a Pair Programming Context: The Good, the Bad, and the Ugly

CHI ’21, May 8-13, 2021, Yokohama, Japan

Table 5: Human-Human vs. Human-Agent Studies.

Human-Human Studies Human-Agent Studies

Samples Average P-Value || Samples Average
Productivity 9 50.44 0.2191 14 66.00
Code Quality 9 89.33 0.9144 14 98.36
Self-Efficacy 18 3.83 0.1093 14 3.36

methods essential for completing the task. The grading metrics can
be found at [96].

On analyzing the progress made by 9 pairs in human-human
and 14 pairs in human-agent studies, we found an insignificant
difference with a p-value of 0.2191 for =0.05 (Table 5). Hence, in
both studies productivity rates were similar, although the average
score for human-agent (66.00%) was more than human-human
(50.44%). In both studies, pairs were more likely to complete the
methods (horizontal, vertical, and diagonal) and test cases related
to winning. Only two pairs finished both the tie and take turns
test cases. Further, participants in both studies built off each other’s
code in order to progress further.

All participants in both human-human and human-agent studies
reused code often, as there were methods and test cases that needed
few modifications for the tic-tac-toe game. Reusing (copying, past-
ing, and modifying) code amongst similar sections, such as the
horizontal and vertical win methods, helped participants decrease
work time.

In the human-human studies, the participants of pair HH3 built
off each other’s ideas. Similar behavior was found in human-agent
studies. For example, the agent added code to a win test case, and
HA-W1 then built over its code and added loops.

Though, the dialogues in human-human and human-agent con-
versations are different; this may have implications for the natural
language processing component of future conversational agents.
This raises questions about whether machine learning models
should be trained on both human-human and human-agent con-
versations.

Key Takeaways
o A better sense of direction: The agent was particularly use-
ful for keeping participants on the correct path, helping them
have a better sense of direction. Conversely, humans may
deviate from the path, as was the case with HH6, the pair
that scored lowest. Interviews demonstrated how the agent
was able to start human participants on a task and keep them
on track. For example, HA-M6 said “So I think having it drive
and put in some code helped me like actually start somewhere
and get going.” The agent helped participants by starting the
task, laying out the groundwork, and giving them direction.
o Loss of nonverbal cues: Our agent’s inability to read and
understand human, nonverbal social cues impacted produc-
tivity when it acted at inopportune moments. In particular,
the agent sometimes interrupted its human partner’s thought
process regarding the task. For example, in her interview,
HA-W9 said “There are some times when Pairbuddy (our agent)
was interrupting me and I forgave Pairbuddy because I knew
it was a bot. But I didn’t like it.” In human-human collabo-
ration, a human can process a wide range of information,

as research has shown that human brains need 200 millisec-
onds to decipher facial expressions [144] and 0.2 seconds to
detect confidence in another human’s voice [82]. With cur-
rent technology, an agent cannot understand their partner’s
facial cues and vocal intonation on the same level as a hu-
man, nor can it communicate in these ways itself. Therefore,
nonverbal interruption is lost as a communication method.
Humans must take time to communicate their thoughts and
ideas verbally in order for the agent to understand them.
Lack of extended discussions: The length of the discus-
sions between the partners as driver and navigator were
transformed with the introduction of an agent. In human-
human interactions, larger-scope errors were discussed in
more detail but took longer to resolve as the participants
talked through the issue. In HH3, the participants discussed
an error where the game board would not print. They dis-
cussed the potential solutions for this error at length (3.01
minutes). Although these discussions are important, they
hindered productivity in human-human studies.
Comparatively, in human-agent interactions, the agent could
point out errors in the code and give their locations; however,
our agent would often fix them without full explanation. For
example, the agent added the code template for a win test
case without explanation as to what code was added and
why. A carefully designed agent may be able to provide
explanations for the decisions.

(2) Code Quality

To evaluate whether the code produced from the human-agent
study was of the same quality as the human-human study, we mea-
sured the code quality on a scale of 0 to 100. The metrics can be
found at [96]. We measured productivity and code quality sepa-
rately, then combined them for a final grade. For example, in the
human-human study, HH5 had a productivity score of 53% and a
code quality score of 87%. Therefore, we calculated 87% of 53% for
a final score of 46.11% (53 * 0.87 = 46.11%).

On comparing nine human-human and fourteen human-agent
studies using a Wilcoxon signed-rank test, we found insignificant
differences with a p-value of 0.9144 for #=0.05 (Table 5). On aver-
age, human-agent studies’ code quality scores were 12.03% higher
than human-human scores (98.36% human-agent vs. 89.33% human-
human).

Both humans and the agent helped their partners improve the
usability and readability of their programs by refactoring, fixing sim-
ple issues, and organizing/structuring code. For example, human-
agent partners would catch typos, repetition of variable names, and
missing brackets or semicolons. Human-agent partners also helped
improve organization and readability by properly formatting new

CHI ’21, May 8-13, 2021, Yokohama, Japan

and existing code. In one case, the agent made a suggestion to HA-
W5 by saying, ‘Tthink we have a syntax error. I suggest we format the
code,” and on HA-W5’s consent, proceeded to format the code for
her. This type of correction occurred in 5 human-agent studies and
3 human-human studies. Similarly, both types of partners helped
to assist with accidental repetition of code for the methods or the
tests.

Key Takeaways

e Quick access to a plethora of online sources: The pro-
gramming agent’s ability to utilize online sources, such as
Github and Stack Overflow, or past code examples can be
utilized to improve the code quality. Our studies also found
that our agent’s familiarity with the task made the agent
more effective at performing the task at hand. Thus, it was
able to give more useful hints and advice to its partner, while
a human partner was more likely to propose and follow an
inefficient solution. In HHS, the participants pursued an in-
effective solution throughout the study, leading to a code
quality score of 18%. They did not recognize their mistake,
making comments like “that looks good” throughout the du-
ration of the task.
We designed our agent to help code more accurately, provide
motivation, and direct to potential errors. Whenever the
agent saw that participants were stuck with the code, it
would offer to help. For example, the agent told HA-W11
that “If you need any help getting started, I can try,” to which
she responded “Sure, I can actually use some help getting
started here.” Since the agent had more information on the
task, humans treated it accordingly. Sometimes, the agent
would also encourage its partner to ask more questions with
statements like, ‘T feel unsure about the approach we took
here.”
Different code contribution style: Our agent provided the
code as skeletons and templates, while, in human-human
studies, participants added completed sections. Instead of
providing logic verbally, our agent gave some indication of
logic via the structure of the code. While driving, our agent
provided code skeletons for humans to interpret and fill
out. While our agent’s logical limitations sometimes made
it difficult for the programmers to put its suggestions into
effect, it was able to guide its partner via code additions. In
interviews, when asked how our agent helped, HA-M10 said
that “it puts at least the skeleton there, of the Boolean logics
and everything.” This design decision is specific to our agent;
it was chosen to help programmers get started and think
about diverse solutions for the problem in hand.

(3) Self Efficacy

Self-efficacy refers to a person’s belief in their own success. One
major benefit of pair programming is an increase in morale among
students [179]. To investigate whether pair programming helped
increase the self-efficacy of the individuals, we measured the differ-
ences between self-efficacy scores before and after the task in both
the human-human and human-agent studies.

On comparing the self-efficacy scores between 18 individuals in
human-human and 14 individuals in human-agent studies, we found
insignificant results with a p-value of 0.8339 for «=0.05. In both

Kuttal, et al.

Pre

Hrost

Figure 3: Human-Agent and Human-Human Studies Partic-
ipants Self Efficacy. The circled participants had decreased
self-efficacy.

studies, the average self-efficacy scores of the post-questionnaire
were greater than those in the pre-questionnaire (see Figure 3),
indicating that having either a human or agent partner helps in
increasing self-efficacy.

Verification from a partner may increase self-efficacy. In both
studies, one member of the pair verified their partner’s code.

Key Takeaways

o Validation of tasks: Confirmation from the agent was par-
ticularly reaffirming for some participants as they gained
validation from the agent. While humans could validate each
other, they may not have a full understanding of the task.
HA-W1 said, “because it was automated for the program, it
kind of helped confirm that I was doing the right thing.” Vali-
dation from an agent may be perceived as more valuable if
it is automated for a relevant purpose [34, 72].

o Loss of complex discussion: The complex discussions and
interactions that can happen with a human partner were lost
with an agent. As HA-M6, the participant with lowest post-
self-efficacy, said, “There wasn’t as much human interaction,
and it was hard to feel like I was actually knowledge sharing or
trying to understand what we were tackling.” One of the other
participants who ranked lower in post self-efficacy, HA-M3,
said in his interview that “not being able to complete a single
one of those stories is a hit to my self confidence.” Human-
like discussions with an agent are not possible with current
technology.

o Interpretation of code: The participants had to depend on
their own interpretations, since our agent did not explain
the code. As HA-M3 said, ‘Tt (the agent) wrote the code well,
and the code that it wrote was functional for what it did, but
it never actually explained what it drove and left it up to my
interpretation.” Conversely, human participants were able to
explain their code if prompted.

(4) Gender Effect on Pair Programming Measures

We investigated the differences between our men and women
participants while working with both human and agent partners.
When comparing men in human-human (9) and human-agent stud-
ies (7) we found no significant change for productivity, code quality,
and self-efficacy (see Table 6). Our women participants had a signif-
icant difference in productivity (p-value= 0.01055 for ¢=0.05), and a
partially significant difference in self-efficacy (p-value= 0.0626 for
=0.05). On comparing averages, both men and women participants
had positive experiences with our agent, but women benefited more
than men (see Table 6). Usability/reusability and readability of code,
as well as verification, helped both genders, as seen in Table 6.

Trade-offs for Substituting a Human with an Agent in a Pair Programming Context: The Good, the Bad, and the Ugly

Table 6: Men vs. Women

CHI ’21, May 8-13, 2021, Yokohama, Japan

Men ‘Women
P-Value | Average (HH) | Average (HA) || P-Value | Average (HH) | Average (HA)
Productivity 0.832 54 55.57 0.01055 42 76.43
Code Quality 0.7141 99.67 98.57 0.9031 95.67 98.14
Self—Efﬁcacy 0.08892 5.33 -1.4286 0.0626 2 8.1428
Key Takeaways value suggests that our agent helped participants learn the con-

o Women participants’ self-efficacy increased: Through-
out our studies, women scored significantly higher in post-
self-efficacy when working with our agent rather than a
human; averages were also higher for the women partici-
pants working with the agent when compared to men (Table
6). This is an interesting shift, as men consistently score
higher than women in self-efficacy ratings when working
in areas perceived as “masculine,” such as STEM [128]. Fur-
ther, in previous human-human pair programming research,
men’s average post-self-efficacy was greater than women’s,
regardless of their partner’s gender [87].

o Different preferences for agent’s gender: As demonstrated
in previous research, women in human-human pairs usually
prefer to work with other women, while men did not have
a gender preference [87]. There were mixed opinions from
participants of both genders on the avatar and voice of an
agent partner, as seen in Figure 4. A study on gender pre-
sentation for conversational agents revealed that they were
more likely to be characterized as female due to projections
of existing gender stereotypes [39]. As women are more
often associated with personal assistant roles, bots with sim-
ilar assistant-like roles such as Siri and Alexa are presented
and interpreted as feminine [39]. However, with a pair pro-
gramming agent, we conjecture that the male-dominated
state of the computer science field may further effect gender
preferences.

6.1.1 Pair Programming Preferences. Our results demonstrated the
feasibility of replacing a human partner with an agent. We con-
ducted quantitative and qualitative analysis in order to measure
changes in productivity, code quality, and self-efficacy. These were
further triangulated using the post-questionnaire pair program-
ming preferences.

The post-questionnaire on pair programming aspects for both
human-human and human-agent studies helped us measure indi-
vidual’s preferences for working with a human or our agent. On
conducting a Wilcoxon-signed rank test with the pair program-
ming preference scores of 18 individuals in human-human studies
and 14 individuals in human-agent studies, we found insignificant
p-values for most of the questions. The only significant p-value of
0.00652 for @=0.05 was for question 12, which was “pair program-
ming with test-driven development works for me.” This significant

Participants Embodiment
MEN WOMEN Woman
VOICE[1 6 [1 2 4 | [Man
AVATAR‘ 1 1 5 | 3 3 1 ‘ No Preference

Figure 4: Participant preferences on voice and avatar.

cepts of test-driven development and adjust to pair programming.
Figure 5 shows the average scores (y-axis) in human-human stud-
ies (red line) and human-agent studies (black line) for each pair
programming preference question on the x-axis.

The trend line in Figure 5 shows similar sentiments from human-
human and human-agent studies about various aspects of pair
programming. This shows that our agent helped participants with
getting started and understanding the format of the task.

Reflecting our results in RQ1, participants also scored themselves
higher on code quality and productivity. On average, human-agent
participants scored themselves higher than human-human par-
ticipants for higher quality code, better testing and debugging,
confidence in solution, and enjoyment of technique (see Figure 5).
They also scored lower for inefficient use of time and interruptions
distracting both partners (Figure 5).

On comparing questionnaire results by gender, we saw an in-
teresting shift between human-human and human-agent studies.
As seen in Figure 5, women participants had better scores for ev-
ery pair programming question while working with our agent in
comparison to a human partner; their scores increased by over a
full point for “enjoyment of technique” and “confidence in solu-
tion” Conversely, men participants’ scores either stayed the same
or decreased when our agent was introduced.

1 Strongly Disagree / Very Low / Very Poorly / Very Dissatisfied
2 Disagree / Low / Poorly / Disatisfied
3 Neutral
4 Agree/ High / Well / Satisfied
5 Strongly Agree / Very Highly / Very Well / Very Satisfied
Pair Programming with Test-Driven development resulted in
1 Higher quality code

+

A - 2+ Constant code review
W 3+ Betterdesign
- © 4+ Canleam from partner HA
5 + Bettertesting and debugging HH
6 + Improved creativity
T2 s a4 s e 7 8 7 + Improved morale
8 — Inefficient use of time
" " T~ . 9 — One partner's interruptions distract both partners
-/\//\’_/\:/‘ My... with Pair P ing with Test-Driven

10 + Confidence in solution

11+ Enjoyment of technique

Pair Programming with Test-Driven development works for:

s & 7 8 s 1w w12 12 + Me Strongly Disagree / Very Low / Very Poorly / Very Dissatisfied

Figure 5: Pair Programming Preferences Charts. The red line
represents human-human averages, and the black line repre-
sents human-agent averages. The questions along the x-axis
correspond with the numbers in the legend to the right. The
answers were given on a scale of 1- 5 ; 1 being the most neg-
ative response at Strongly Disagree / Very Low / Very Poorly
/ Very Dissatisfied and 5 being the most positive response at
Strongly Agree / Very High / Very Well / Very Satisfied. The
(+) sign signifies that a higher score is preferred, while a (-)
sign signifies the opposite.

CHI ’21, May 8-13, 2021, Yokohama, Japan

6.2 RQ2: What kind of knowledge is
transferred between human-human and
human-agent pairs?

One important benefit of pair programming is knowledge trans-
fer, or individuals exchanging relevant information about the task
with each other. As illustrated by Cockburn et al., “Knowledge is
constantly being passed between partners, from tool usage tips (even
the mouse), to programming language rules, design and program-
ming idioms, and overall design skill” [37]. The code set used for
knowledge transfer is detailed in Table 7. The Tool, Program, Bug,
Code, and Domain code sets for knowledge transfer were inspired
by Jones and Fleming’s study [98]. In our studies, we found an
additional knowledge transfer code set, Technique. Table 8 gives
the frequency of these knowledge transfers in our human-human
and human-agent studies, as well as knowledge our agent provided
in human-agent studies.

As the given task was centered around the use of test-driven
development, it was important that participants understood the
technique they were required to use. Our agent was programmed
to give suggestions, such as telling the participant to write test
cases for test-driven development. Many participants, particularly
among the university students with less overall experience, were
not as familiar with test-driven development in Java. Therefore, this
was an important knowledge transfer to make. These results were
also supported by the post-questionnaire on pair programming
preferences (discussed in RQ1). Another technique was creating
test cases based on the user stories, and, in our studies, both humans
and the agent were noted to direct their partner towards making
tests, as per the user stories.

Further, both humans and the agent directed their partners to
the location of bugs/errors in the code that may otherwise have
gone unnoticed by the other participant. Our agent noticed 42 of
the 98 bugs in human-agent studies; it either informed the partner
or directly fixed the bug/error. For example, HA-M7 asked “Can you
point me in the right direction here?”. The agent responded “Between
line 74 and 75, add an if statement.”

Participants transferred knowledge regarding programming con-
cepts and organized their own knowledge as a result of interactions
in pair programming [27, 28, 104, 105, 113, 129, 131].

In pair programming, pairs learned topics better while working
together [181], narrowed their gaps in knowledge [8, 36], exchanged
both project-related and general knowledge [132], and discovered
new tools [121]. We found similar knowledge transfer in human-
agent studies. For example, when asked what he learned from our
agent, HA-M2 responded, “yeah, about formatting, how to do test-
driven development a little bit. I mentioned wanting to do the test-
driven part of it, but he or it or the robot helped me make sure that I
was writing it correctly. And I liked that.”

Key Takeaways

o Getting unstuck: Human-agent pairs gained the ability to
get unstuck with comparable ease, as our agent provided
skeleton or base code. The agent would provide empty meth-
ods for the task, properly formatted empty loop shells and
example test cases. Code skeleton generation is shown to
improve consistency and reduce errors [16]. For example,

Kuttal, et al.

HA-W11 said, ‘T will say having this example right here al-
ready there helps a lot.” Conversely, in human-human studies,
a detour in logic sometimes derailed the entire task. The
knowledge transfer from our agent also expedited the com-
pletion rate (see RQ1).

The agent was designed to make helpful suggestions to the
participant in order to to spark creativity on their end, most
commonly, “Are there other ways we could do this?” Rather
than presenting a potential solution in full like a human part-
ner, our agent would facilitate learning and problem solving
by helping the human formulate an answer. Encouraging
a variety of ideas and potential solutions helps to facilitate
learning [80, 81].

Fostering creativity: Our agent was designed to pursue
a specific solution to the problem, while human partici-
pants pursued varying solutions. Although participants in
the human-agent studies had the choice of pursuing an al-
ternative idea, they were less risk averse and continued with
the agent’s solution. Various factors such as education level,
gender, and agent behavior further impact trust, and some
users may over-rely or under-rely on the agent [34, 72]. HA-
W1 said, ‘T trusted the computer because I assumed it knew
what the right answer was.” Research has shown that integrat-
ing a virtual agent into the design of artificial intelligence
programs increases user trust [174]. Although, as discussed
in RQ1, this was effective, as our agent usually helped them
solve the problem correctly, it can nevertheless be perceived
as dampening creativity.

Lack of logical explanations: While the participants in the
human-human study frequently explained the reasoning and
logic behind their decisions to their partner, the agent was
not capable of this. If asked to explain how its code worked,
it would simply reply, “Sorry, I'm not good at understand-
ing logic.” In human-human studies, the participants were
observed building off each other’s knowledge and logic via
discussion. Research has shown that collaborative learning
is more effective than traditional methods such as lectures,
as it allows students to build their own mental models based
on discussion and knowledge transfer that occurs during the
problem-solving process [2].

Typically, human navigators will contribute ideas to the task
while their partner is coding [98], but our agent would only
ask the participant what they were doing and correct errors,
making it somewhat inefficient as a navigator. For exam-
ple, HA-M6 said, “We never really discussed the solution...
(why we were) doing something... or what might be helpful.”
Unfortunately, our agent could not provide this type of de-
tailed discussion [177]. Generating effective explanations
and discussions is an active research area (e.g., [14, 117]),
and this may remain one of the major challenges of replacing
a human with an agent.

Unidirectional knowledge transfer: Knowledge transfer
from a human to the agent was not possible. While human-
human pairs learned and experienced knowledge transfer
simultaneously as they worked, an agent’s knowledge cannot
and did not evolve during the task.

Trade-offs for Substituting a Human with an Agent in a Pair Programming Context: The Good, the Bad, and the Ugly

CHI ’21, May 8-13, 2021, Yokohama, Japan

Table 7: Knowledge Transfer Definitions and Examples

Knowledge | Definitions Examples (from our study)

Transfer

Tool Knowledge about the IDE or how to use the tool. “there’s a key bind for going back a tab”

Program Knowledge about the programming language itself | ‘T could also just aggregate the chars. I think they
or it’s syntax. work like strings in that way.”

Bug An error in the code. “T think we are missing code in this function.”

Code The code itself; ie. what they are programming. “So I'm gonna need to use a for loop as well.”

Domain The task (in this case, tic-tac-toe game) “The goal is to get three of...marker...in a row.”

Technique | About the techniques being used (i.e., test driven | “So if it’s test driven development, I want to start
development, pair programming) by writing a test, I think.”

Table 8: Knowledge Transfer Frequency in Human-Human (HH), Human-Agent (HA), and from the Agent.

Knowledge Transfer | Frequency in HH | Frequency in HA | From Agent
Tool 5 0 0
Program 15 2 0
Bug 48 98 42
Code 672 437 56
Domain 14 6 0
Technique 6 15 6

6.3 RQ3: Do human programmers consider the
agent as their partner?

We investigated human attitudes towards the agent in comparison
to other humans when:

(1) Interrupting the Partner

An interruption is “a starting up of some intervention by one
person while another’s turn is in progress.” Interruptions are as-
sociated with interpersonal dominance [1, 120, 192], friendliness
[123], engagement [59], and involvement in the interaction [151].

In pair programming, one important benefit is getting help from
a partner. Both human and agent partners were able to provide help,
and the way in which participants asked for help was consistent
between human-human and human-agent interactions. Both used
interruptions to either ask for or offer help. In general, human
programmers tended to ask for help indirectly rather than directly
stating that they needed help. For example, in HH7, HH7-W8 said,
“but I'm not sure how to do that.” This behavior stayed consistent
when humans were working with our agent. For example HA-M8
said, ‘T don’t know what to do from here.”

Key Takeaways

o Willingness to ask for help and address uncertainties:
Participants were less self-conscious about mistakes and
uncertainties while interacting with the agent; in contrast,
humans are hesitant to ask for help from a human partner, as
they may feel week, needy, or incompetent [169]. As HA-W5
said, ‘T think the big thing is sometimes as a programmer, it’s
embarrassing when you make mistakes. So you’re stuck on
something around your colleagues, but PairBuddy (our agent)
I'don’t think judges me.” This may have influenced the pro-
ductivity and code quality, as seen in RQ1.

o Lack of diversity in responses: However, due to the limits
of current technology, a wide range of responses were lost.

Once the human partner got their first response addressing
our agent’s limitations regarding logic they asked simpler
questions (e.g., code implementation or test related). For
example, HA-W14 asked the agent a complex question re-
garding logic, and the agent responded, “T’'m not good at logic.”
From then on, the participant only asked non-logic related
questions about the next steps or switching roles. The limita-
tions of an agent can discourage asking questions when the
participant doubts the agent’s capability to answer, though,
different agents may be designed with varying capabilities
and responses.

e Providing negotiated interruptions: This feature was de-
pendent on the design of our agent. If an agent is designed
differently, then this behavior may change. In human-human
interactions, the helper was more likely to either help with-
out asking first, or their partner would ask for them to help
code. The agent never did anything to the code without ask-
ing first, so it could only give help when explicitly permitted
to do so. It would prompt the change in roles with questions
like “mind if I drive?” or “would you like some help?”. There-
fore, our agent could only help with the code as much as the
participant allowed. Our agent was intentionally designed
to have negotiated interruptions [78, 139, 187]. This could
hinder productivity by distracting a human mid-thought, but
it could also assist productivity, as negotiated interruptions
are designed to give useful advice.

(2) Building on Partners’ Ideas

In collocated pair programming, individuals act upon, dismiss,
or modify/refine their partners’ ideas [98]. As remote pair program-
ming shows similar results to collocated, we found this behavior in
our human-human study.

In human-human studies, we primarily saw participants act on
and modify ideas, with less dismissal. For example, participants in

CHI ’21, May 8-13, 2021, Yokohama, Japan

HH2 acted on and modified each other’s ideas as they worked. Sim-
ilarly, in human-agent studies participants acted on and modified
the code skeletons provided by our agent, but did not refine them.
For example, Figure 6 shows how HA-M2 changed the agent’s given
code skeleton.

01

) { game.placeMark (9,

game.placeMark(@,
game.placeMark(1,
game .placeMark(2,
assertEquals(game.isWon(),

Figure 6: Instance of HA-M2 adding onto the code skeleton
provided by the agent.

Key Takeaways

e Ignore agent without a social cost: There were 22 in-
stances of human participants ignoring the agent, but only
one instance of a human ignoring another human. HA-M38
said simply, ‘T did not consider (the agent’s) feelings.” In con-
trast, a human partner may have to bear the social cost of
ignoring or disagreeing with another human’s suggestions.
HH3-M5 said that ‘T just want them to, like, be semi-polite
about it (corrections).” Where ignoring a human may lead to
discomfort and hurt, an agent will not have any emotional
conflict with its partner.

e No acknowledgement to agent’s uncertainty: While cod-
ing, the agent made statements like, “This might work. I'm
not sure, though.” However, human programmers did not
acknowledge the agent’s uncertainty. Since agents can still
make errors, human programmers need to stay vigilant while
working with an agent. They also ignored when the agent
expressed uncertainty about how the human’s code worked.

o Not refining agent provided code: Further, in human-agent
studies, participants accepted the agent’s ideas. Though,
since they did not modify/refine them further, their solu-
tions may have lacked diversity. In human-human studies,
participants would modify and refine their partner’s code
when necessary.

(3) Trusting a Human Partner vs. an Agent

One important factor of pair programming is trust; partners
need to consider and accept suggestions and input from each other.
Our participants built trust with both human and agent partners
over time. HA-W5 said, ‘T think I was a little distrustful at first of
the application, but then after working with it, especially after I saw
that it was helping me solve the problem, I trusted it a little more.”
Similarly, in the human-human studies, HH3-M5 said, “at the very
beginning I didn’t (trust) just cause it was a stranger, but as it (time)
went on... she’s doing what I was planning and then... I didn’t have
to steer so much.” Hence, humans gradually built trust with both
human and agent partners.

Key Takeaways
o Trusted agent with simple programming tasks but not
complex tasks: Participants tended to take the agent’s ad-
vice most of the time for our task. For example, HA-M38

Kuttal, et al.

explained why he felt inclined to trust the agent, saying, “the
computer knows more simple functions than a human knows.
In that case I would trust a computer more.” This demonstrates
that trust was easily built with an agent for simple program-
ming tasks.

With the current state of artificial intelligence, the capa-
bility to handle complex tasks was lost. Four participants
expressed that they would prefer to work with a human for
more complex tasks. For example, HA-M6 said that he had a
slight preference towards human partners because “it (the
agent) doesn’t give that more specific, explanatory approach.”
Nevertheless, they also expressed that our agent would be
more useful for simple tasks.

o Trust based on agent’s embodiment: Participants’ trust
levels for the agent were transformed based on the agent’s
embodiment. Research has shown that human-like agents
are more easily trusted [146]; therefore, the voice and avatar
used to anthropomorphize our agent may have influenced
the participants’ trust levels. Four participants noted that
they would enjoy working with our agent more if it was more
human-like in demeanor. For example, HA-W4 expressed
that the dialogue should be “more human - then you feel like
you’re sitting there with a person.” However, three partici-
pants expressed that being too close to a human would seem
uncanny. As explained by participant HA-M6, I think there’s
something a little creepy about something that’s really close
to being human...I'm more comfortable with it being a little
more obviously a robot.” These results are similar to literature
wherein empirical evidence is mixed about the necessity of
the embodiment of an agent [46, 69, 70, 119, 170, 190].

(4) Humility Towards a Partner

We measured the humility towards partners based on the usage
of collective monologue and self-disclosure dialogue. Humans use
collective monologues when working in social environments, using
plural pronouns like “us” and “we” more frequently than when alone.
In both pair programming studies, pronoun choice was analyzed
to see if humans considered the agent as a partner. Participants
had the same frequency for using singular “I” or “you” pronouns
between the human-human (avg. 37.3%) and human-agent studies
(avg. 35.2%) and, in turn, they had similar ratios of plural “us”
or “we” pronouns (64.8% for human-human and 62.7% for human-
agent). Further, in both human-human and human-agent studies
the participants used the same grammar in similar situations. For
example, when their partner would make a mistake, participants
would switch to a singular pronoun to acknowledge the mistake.
HA-M2 said to the agent, T can’t tell if your code...” Similarly,
HA-W9 said to the agent, “You don’t have the test...” Humans also
acknowledged their own mistakes with singular pronouns while
working with the agent. For example, HA-M3 said, ‘I made a mistake
on line 33...” Hence, participants showed the same humility towards
our agent as towards a human partner.

Key Takeaways

e Adding human-like humility: If desired, a similar level
of human-like humility can be incorporated into an agent’s

Trade-offs for Substituting a Human with an Agent in a Pair Programming Context: The Good, the Bad, and the Ugly

CHI ’21, May 8-13, 2021, Yokohama, Japan

Table 9: Summary of Our Findings. (*) Shows Phenomenon Specific to our Agent Choice.

Similar Aspects Gained Lost Transformed
Productivity | Reuse code Correct path Non-verbal cues Length of discussions

RQ1 Code Quality | Usability; readability Online resources N.A. Code contribution style*
Self Efficacy | Verification Better validation No complex discussions | Interpretation of code®
Gender Reuse code, usability, | Helped women N.A. Avatar/voice preference

readability, verification

to show partnership

RQ2| Knowledge Bug location; test- | Unstuck; creativity Explaining logic Unidirectional transfers

Transfer driven development;
organize code

Interrupting | Asking for help Less self-conscious Agent’s limited re- | Interruption style*

RQ3 sponses”
Building on | Acting on and modify- | Ignore without social | Ignore agent’s uncer- | Refining partner’s ideas
Ideas ing ideas cost tainty
Trust Built over time Trust for simple tasks | No complex task solved | Based on embodiment
Humility Used plural pronouns | Dialogue design can | N.A. Addressed as person and

bring humility™

thing

design. This can be achieved by integrating dialogue tem-
plates that consider collective monologue for collaboration
and self disclosure for admitting its mistakes.
Acknowledging success as a team and self-disclosure
for mistakes: We wrote our script to encourage human par-
ticipants to see their relationship with our agent as a team.
Therefore, as stated, we ensured that our agent contributed
successes towards the team, and its mistakes towards itself.
This worked well, with the “T” vs. “We” ratios staying consis-
tent between human-human and human-agent studies.
Addressing agent as a person or a thing: Third person
pronouns such as “he,” and “she,” were used for our agent,
but participants also called the agent “it” For example, HA-
W11 referred to the agent as “it” when she said “Awesome. So
it (agent) just did that same change again”. She also discussed
the agent in third person while working with it: “As I was
saying before, I think I'm learning more how to talk to this
bot (agent).” It was clear that the humans in the study recog-
nized the non-sentience of the agent partner and addressed
it accordingly.

7 TRADE OFFS OF AN AGENT

Our results evidenced the feasibility of using an agent as a pro-
gramming partner. Table 9 summarizes our findings regarding: (1)
What aspects of pair programming were similar between human-
human and human-agent interactions, (2) What new aspects of pair
programming were gained with an agent? (3) What aspects of pair
programming were lost with an agent? (4) What aspects of pair
programming were transformed by the introduction of an agent?
We conjecture that these results can be generalized by designing
an agent informed by research from disciplines such as intelligent
tutoring systems, human-robotic interactions, psychology, educa-
tion, and software engineering. The primary factors that may have
affected our results were the way the agent contributed code as
a driver, how it provided negotiated interruptions, human inter-
pretation of code in lieu of explanations from the agent, agents’

limited responses regarding complex logic questions, and the dia-
logue script for adding humility. Hence, as suggested by our results,
a pair programming conversational agent brings its own set of good,
bad, and ugly aspects.

7.1 The Good

(1) A Non-judgemental Partner Addressing the Pipeline
Problem.

A conversational agent, utilizing artificial intelligence and ma-
chine learning technologies, can resolve the problems associated
with human pair programming partners, such as scheduling, collo-
cating, imbalanced roles, and power dynamics. Two participants,
HA-M2 and HA-W5, noted that they felt more comfortable with
the agent, since it would not judge them (see Section 6.3). This
shows that it can act as a non-judgemental partner, which will
be especially beneficial for programmers who may be reluctant to
form partnerships with their peers, such as people who are intro-
verted, autistic, or minorities like women and people of color. Since
computer science is not a diverse field, it can be difficult for these
people to find pair programming partners they feel comfortable
with. Therefore, a non-judgemental pair programming agent could
help these groups feel welcome in computer science and encourage
diversity.

A non-judgemental agent has the potential to encourage di-
versity; our results showed a significant increase in productivity
and self-efficacy scores among women participants when working
with an agent. The difference in these scores could be influenced
by mixed gender pairs in the human-human studies, as Kuttal el
al. [87] found that, in human-human pair programming, women
showed lower self-efficacy scores when working with men. How-
ever, comparisons of pre- and post-self-efficacy questionnaires re-
veal that some men participants showed a decrease in self-efficacy
with an agent. This discrepancy may be attributed to other factors;
nonetheless, the agent’s design should promote gender equality by
utilizing methods like GenderMag [23, 24, 40, 71, 171], which re-
moves gender biases from agent designs. GenderMag helps find and

CHI ’21, May 8-13, 2021, Yokohama, Japan

fix gender-related issues in problem-solving software and increase
gender inclusiveness.

Such a conversational agent will need to be trained on data
from various populations to integrate diversity. Machine learning
algorithms can introduce bias in their results if they are not trained
with diverse data [101]. With the current under-representation of
women and minority groups in the computer science field, it may
be difficult to find diverse populations of programmers [158]. If
we are not careful with data selection, it may further perpetuate
stereotypes about the field.

Further, an agent — being a low-cost interactive programming
partner — can help solve the pipeline problem and facilitate pro-
gramming education effectively, efficiently, and comfortably for
students. Such an agent can easily be integrated into interactive edu-
cation platforms such as Codecademy [153] and intelligent tutoring
systems (e.g., [2, 32]).

Such integration can transform education for people in rural
areas and students learning remotely, including during a global
pandemic like COVID-19. With the various pitfalls of online com-
munication including poor internet connection, lack of resources,
and scheduling conflicts, it is good to have an alternative option
for collaborative work scenarios.

(2) Motivating Partner

For human-human pairs, the amount of motivation participants
would give their partner depended on their individual personalities.
Our simple design using motivational feedback was effective when
the human-agent participants were struggling, making progress,
or about to give up. Motivation and assistance are important as-
pects of student learning, as supported and researched in intelligent
tutoring systems [12, 44, 48, 111]. The agent’s motivation and feed-
back helped students achieve their goals and scaffold self-regulated
learning [48]. Rebolledo-Mendez et al. [135, 136] created motiva-
tional models based on effort, independence, confidence, and level
of attention that were later implemented by existing intelligent
tutoring systems; these models are able to provide consequent scaf-
folding. Utilizing the literature about intelligent tutoring systems,
we see a great potential for achieving increased motivation among
programmers in a pair programming context.

(3) Active Learning Support

We designed the agent to support active learning instead of a
tutor-tutee dynamic, similar to computer-supported collaborative
learning tools. Although these learning tools provide an exceptional
learning environment, they require at least two participants and do
not offer individualized assistance and guidance [61]. Agents can
be designed to have the benefits of intelligent tutoring systems [4],
while simultaneously providing pair programming benefits.

The “free rider effect” may emerge in pair programming when
one individual in the pair performs poorly, partners do not exert
maximum or equal effort, or the pair fails to coordinate optimally
[50, 57, 193]. To alleviate the free rider effect, frequent role exchange
is recommended [57]. Agents can be designed to promote equal pair
programming by measuring statuses like time, effort, and progress.
Therefore, our agent was designed to balance roles by tracking the
time spent driving for each participant, and when the participant
showed free rider behavior, the agent would politely decline to
drive. For example, HA-W14 repeatedly asked the agent to drive,
so the wizard eventually declined the offer.

Kuttal, et al.

(4) Supporting Creativity and Problem Solving

The agent’s design can be enriched to include creative problem
solving processes and problem-solving strategies. Examples of these
such as clarifying the task, generating ideas, developing solutions,
and implementing the solutions were made to the extent possible
with current technology (detailed in Section 4.2). Further, agents
can utilize problem-solving strategies such as divide and conquer,
analogy, generalization, backwards, and “sleep on it” [102, 130, 178]
by using textual hints or by providing code examples, such as an
Idea Garden [80, 81]. Agents could be designed to accommodate
different programming and learning styles based on gender as well.
For example, women are more likely to see navigator as the primary
communicator role, while men interpret the driver as the primary
communicator [87].

7.2 The Bad

(1) Excessive Trust Towards Agents

Humans trusted the agent to a notable extent, which caused
them to become risk averse, as users tended to make decisions
that maximized efficiency at the cost of thoroughness [54]. The
higher trust by users in the agent can lead to automation bias and
greater situational trust in an automation [73, 161]. We saw similar
behavior for programmers while pair programming with our agent.
For example, HA-W9 said, “I trusted the code that (the agent) gave
me because I knew it (the agent) already knew the answer.” Such
behaviour led to inflexible solutions produced in the programming
effort and could effect learning outcome, especially for students.
(2) Lack of Explanations

Our agent was unable to explain the logic behind the solutions
or code it added to the program. HA-M6 stated his preference for
working with a human, as he wanted the agent to have a “more
specific, explanatory approach like a human.” Similarly, Simon and
Susan Snowden [152] found that students are unable to understand
the purpose of code or recognize it without explanation. While there
is a potential to utilize tools like Whyline [94, 95] to answer debug-
ging related questions by visualizing the runtime events, generating
feedback and human-like explanations is not possible. Artificial
intelligence research already aims to produce more explainable
models to enable users to understand how an agent arrived at a
solution [14, 117]. Our research illustrates the importance of gener-
ating explanations for conversational programming agents.

7.3 The Ugly

(1) Lack of Interpersonal and Social Skill Support

An agent cannot completely replace a human in a pair program-
ming context. Some of the interpersonal and social characteristics
learned with another human cannot be learned from an agent. Pair
programming with another human is helpful for getting a glimpse
into real-world collaboration, communication, and coordination, as
well as broadening knowledge, gaining a greater sense of responsi-
bility, forming friendships, and making other helpful connections
[30, 52, 87, 112, 112, 131]. These benefits may not be completely
replicated with an agent.

In human-human collaboration, the human brain can quickly
process large ranges of information based on facial expressions
and vocal intonation [82, 144]. With current technology, an agent

Trade-offs for Substituting a Human with an Agent in a Pair Programming Context: The Good, the Bad, and the Ugly

cannot understand or replicate these forms of communication in
an efficient manner, nor can it tell which interruptions are received
positively and which are received negatively. As previously men-
tioned, many factors influence whether an interruption is perceived
as cooperative or disruptive [59]. However, an agent cannot distin-
guish between these indicators, nor can it understand how they
affect their partner’s perception.
(2) Lack of Educative Conversations on Program Logic
Humans discuss with each other to resolve issues during pair pro-
gramming. However, such in-depth discussions on programming
logic are not currently viable with conversational agents.

8 CONCLUSION

This research lays the groundwork for the feasibility of pair pro-
gramming agents. Based on our quantitative and qualitative analysis
of the human-human and human-agent studies, we found:

® RQ1: Can we continue the benefits of pair programming by
replacing a human programmer with an agent?
On comparing the scores for productivity, code quality, self-
efficacy, and pair programming preferences, we found no
significant differences. Participants enjoyed learning test-
driven development concepts using an agent. The results
also showed that women in particular benefited from the
introduction of an agent.

e RQ2: What kind of knowledge is transferred between human-
human and human-agent pairs?
The agent was unable to explain its logic, or elaborate on
their partners’ ideas, whereas human partners could analyze
the logic behind agent-provided code themselves to extract
the ideas. However, the agent was able to provide code skele-
tons and hints to lead their partner towards a solution.

® RQ3: Do human programmers consider the agent as their part-
ner?
Human partners trusted the agent instructions often with-
out any questions, in one case responding, ‘T’m going to
blindly believe you.” Human partners interrupted agents
when they did not know what to do next, were stuck, were un-
sure about their problems, or wanted clarification, whereas
human-human pairs were more hesitant and asked follow-
up questions to understand, clarify, or verify their partners’
decisions. Also, human partners showed the same humility
towards agents and humans by attributing success to the
group using words like “we,” and taking personal responsi-
bility for mistakes using “I” or “me.” Human partners acted
on or dismissed the agent’s ideas as humans do, except that
humans tended to modify/refine their human partners’ ideas.

A pair programming conversational agent led to the good — an agent
can act as a motivating, non-judgemental partner that can help solve
the pipeline problem by allowing active learning—the bad— humans
tend to blindly trust agents, and current technology necessitates
new ways of generating diverse solutions to the programming task
in-hand along with explainable feedback —and the ugly- a lack of
social and interpersonal skills that can be only learned with another
human and the inability to hold complex discussions on logic and
ideas. The positive results proved the feasibility of developing an

CHI ’21, May 8-13, 2021, Yokohama, Japan

Alexa-like programming partner that could change the future of
programming and computer science education.

ACKNOWLEDGMENTS

We would like to thank the CHI reviewers, especially Luigi De
Russis, for his insighful feedback. Thanks to our study participants
as well.

REFERENCES

[1] Piotr D. Adamczyk and Brian P. Bailey. 2004. If Not Now, When? The Effects of
Interruption at Different Moments within Task Execution. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Vienna, Austria)
(CHI ’04). Association for Computing Machinery, New York, NY, USA, 271-278.
https://doi.org/10.1145/985692.985727

[2] Maryam Alavi. 1994. Computer-Mediated Collaborative Learning: An Empirical
Evaluation. MIS Quarterly 18, 2 (1994), 159-174. http://www.jstor.org/stable/
249763

[3] S.Ali, L. C.Briand, H. Hemmati, and R. K. Panesar-Walawege. 2010. A Systematic
Review of the Application and Empirical Investigation of Search-Based Test Case
Generation. IEEE Transactions on Software Engineering 36, 6 (2010), 742-762.

[4] Ali Alkhatlan and Jugal Kalita. 2018. Intelligent Tutoring Systems: A Compre-
hensive Historical Survey with Recent Developments. arXiv:1812.09628 [cs.HC]

[5] Teresa M. Amabile and Michael G. Pratt. 2016. The dynamic componential
model of creativity and innovation in organizations: Making progress, making
meaning. Research in Organizational Behavior 36 (2016), 157 — 183. https:
//doi.org/10.1016/j.1i0b.2016.10.001

[6] Amazon. 2020. Virtual Assistant Amazon Alexa . https://developer.amazon.
com/en-US/alexa

[7] Apple. 2020. Virtual Assistant Apple Siri. https://www.apple.com/siri/

[8] E. Arisholm, H. Gallis, T. Dyb4, and D. L. K. Sjoberg. 2007. Evaluating Pair
Programming with Respect to System Complexity and Programmer Expertise.
IEEE Transactions on Software Engineering 33, 2 (2007), 65-86.

[9] Michael Armstrong. 2012. Armstrong’s handbook of reward management practice:
Improving performance through reward (12 ed.). Kogan Page Publishers, London.

[10] Zahra Ashktorab, Mohit Jain, Q. Vera Liao, and Justin D. Weisz. 2019. Resilient
Chatbots: Repair Strategy Preferences for Conversational Breakdowns. In Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing Systems
(Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New
York, NY, USA, Article 254, 12 pages. https://doi.org/10.1145/3290605.3300484
Prashant Baheti, Edward F. Gehringer, and P. David Stotts. 2002. Exploring
the Efficacy of Distributed Pair Programming. In Proceedings of the Second XP
Universe and First Agile Universe Conference on Extreme Programming and Agile
Methods - XP/Agile Universe 2002. Springer-Verlag, Berlin, Heidelberg, 208-220.
Ryan S.J.d. Baker. 2007. Modeling and Understanding Students’ off-Task Be-
havior in Intelligent Tutoring Systems. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems (San Jose, California, USA) (CHI
’07). Association for Computing Machinery, New York, NY, USA, 1059-1068.
https://doi.org/10.1145/1240624.1240785
[13] A.Bandura. 1986. Social Foundations of Thought and Action: A Social Cogni-
tive Theory. Prentice-Hall, Michigan. https://books.google.com/books?id=
HJhqAAAAMAA]
Alejandro Barredo Arrieta, Natalia DAaz—RodrAgueZ, Javier Del Ser, Adrien
Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez,
Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. 2020.
Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities
and challenges toward responsible AL Information Fusion 58 (2020), 82 — 115.
http://www.sciencedirect.com/science/article/pii/S1566253519308103
[15] A. Belshee. 2005. Promiscuous pairing and beginner’s mind: embrace inexpe-
rience [agile programming]. In Agile Development Conference (ADC’05). Agile
Development Conference, Denver, Colorado, 125-131. https://doi.org/10.1109/
ADC.2005.37
[16] Jeannette Bennett, Kendra Cooper, and Lirong Dai. 2010. Aspect-oriented
model-driven skeleton code generation: A graph-based transformation approach.
Science of Computer Programming 75, 8 (2010), 689-725.
[17] Timothy Bickmore and Justine Cassell. 2001. Relational Agents: A Model and
Implementation of Building User Trust. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (Seattle, Washington, USA) (CHI "01).
ACM, New York, NY, USA, 396-403. https://doi.org/10.1145/365024.365304
[18] Jay Bradley, David Benyon, Oli Mival, and Nick Webb. 2010. Wizard of Oz Ex-
periments and Companion Dialogues. In Proceedings of the 24th BCS Interaction
Specialist Group Conference (Dundee, United Kingdom) (BCS ’10). BCS Learning
& Development Ltd., Swindon, GBR, 117-123.
Sheryl Brahnam and Antonella De Angeli. 2012. Gender affordances of
conversational agents. Interacting with Computers 24, 3 (04 2012), 139-153.

(11

[12

[14

[19

https://doi.org/10.1145/985692.985727
http://www.jstor.org/stable/249763
http://www.jstor.org/stable/249763
https://arxiv.org/abs/1812.09628
https://doi.org/10.1016/j.riob.2016.10.001
https://doi.org/10.1016/j.riob.2016.10.001
https://developer.amazon.com/en-US/alexa
https://developer.amazon.com/en-US/alexa
https://www.apple.com/siri/
https://doi.org/10.1145/3290605.3300484
https://doi.org/10.1145/1240624.1240785
https://books.google.com/books?id=HJhqAAAAMAAJ
https://books.google.com/books?id=HJhqAAAAMAAJ
http://www.sciencedirect.com/science/article/pii/S1566253519308103
https://doi.org/10.1109/ADC.2005.37
https://doi.org/10.1109/ADC.2005.37
https://doi.org/10.1145/365024.365304

CHI ’21, May 8-13, 2021, Yokohama, Japan

[20

(21]

[22

[29

[30

[31

@
&,

(33]

(34]

(35]

(36]

(37

[38

(39]

[40

N
fury

(42]

(43

https://doi.org/10.1016/j.intcom.2012.05.001

Virginia Braun and Victoria Clarke. 2006. Using Thematic Analysis in Psy-
chology. Qualitative research in psychology 3 (01 2006), 77-101. https:
//doi.org/10.1191/1478088706qp0630a

Tim Brown. 2009. Change by Design: How Design Thinking Transforms Organi-
zations and Inspires Innovation. HarperBusiness, New York.

Margaret Burnett, Anicia Peters, Charles Hill, and Noha Elarief. 2016. Finding
Gender-Inclusiveness Software Issues with GenderMag: A Field Investigation. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems.
ACM, San Jose, 2586-2598.

Margaret Burnett, Simone Stumpf, Jamie Macbeth, Stephann Makri, Laura Beck-
with, Irwin Kwan, Anicia Peters, and William Jernigan. 2016. GenderMag:
A Method for Evaluating Software’s Gender Inclusiveness. Interacting with
Computers forthcoming (01 2016). https://doi.org/10.1093/iwc/iwv046
Margaret M. Burnett. 2020. GenderMag. http://gendermag.org/

Ramoén Burri. 2018. Improving user trust towards conversational chatbot interfaces
with voice output. Master’s thesis. KTH, School of Electrical Engineering and
Computer Science (EECS).

Judith Butler. 1999. Revisiting Bodies and Pleasures. Theory, Culture & Society
16, 2 (1999), 11-20. https://doi.org/10.1177/02632769922050520

Lan Cao, Kannan Mohan, Peng Xu, and Balasubramaniam Ramesh. 2004. How
Extreme Does Extreme Programming Have to Be? Adapting XP Practices to
Large-Scale Projects. In Proceedings of the Proceedings of the 37th Annual Hawaii
International Conference on System Sciences (HICSS’04) - Track 3 - Volume 3
(HICSS ’04). IEEE Computer Society, USA, 30083.3.

Robert Cartwright, Eric Allen, and Charles Reis. 2002. Production Programming
in the Classroom. ACM SIGCSE Bulletin 35 (11 2002). https://doi.org/10.1145/
611892.611940

Mehmet Celepkolu and Kristy Elizabeth Boyer. 2018. The Importance of Pro-
ducing Shared Code Through Pair Programming. In Proceedings of the 49th
ACM Technical Symposium on Computer Science Education (Baltimore, Maryland,
USA) (SIGCSE ’18). Association for Computing Machinery, New York, NY, USA,
765-770. https://doi.org/10.1145/3159450.3159506

Mehmet Celepkolu and Kristy Elizabeth Boyer. 2018. Thematic Analysis of
Students’ Reflections on Pair Programming in CS1. In Proceedings of the 49th
ACM Technical Symposium on Computer Science Education (Baltimore, Maryland,
USA) (SIGCSE ’18). Association for Computing Machinery, New York, NY, USA,
771-776. https://doi.org/10.1145/3159450.3159516

Christopher P Cerasoli, Jessica M Nicklin, and Michael T Ford. 2014. Intrinsic
motivation and extrinsic incentives jointly predict performance: A 40-year
meta-analysis. Psychological bulletin 140, 4 (2014), 980.

Ruth W Chabay and Jill H Larkin. 2020. Computer assisted instruction and intel-
ligent tutoring systems: Shared goals and complementary approaches. Routledge,
Abingdon, United Kingdom.

Gary Charness and Uri Gneezy. 2012. Strong Evidence for Gender Differences in
Risk Taking. Journal of Economic Behavior & Organization 83, 1 (2012), 50-58.
J. Y. C. Chen and M. J. Barnes. 2014. Human-Agent Teaming for Multirobot
Control: A Review of Human Factors Issues. IEEE Transactions on Human-
Machine Systems 44, 1 (2014), 13-29.

K. S. Choi. 2013. Evaluating Gender Significance within a Pair Programming
Context. In 2013 46th Hawaii International Conference on System Sciences. IEEE,
Hawaii, 4817-4825. https://doi.org/10.1109/HICSS.2013.209

Jan Chong and Tom Hurlbutt. 2007. The Social Dynamics of Pair Programming.
In Proceedings of the 29th International Conference on Software Engineering (ICSE
’07). IEEE Computer Society, USA, 354-363. https://doi.org/10.1109/ICSE.2007.
87

Alistair Cockburn and Laurie Williams. 2001. The Costs and Benefits of Pair
Programming. Addison-Wesley Longman Publishing Co., Inc., USA, 223-243.
Deborah R. Compeau and Christopher A. Higgins. 1995. Computer Self-Efficacy:
Development of a Measure and Initial Test. MIS Q. 19, 2 (June 1995), 189-211.
https:/doi.org/10.2307/249688

Pedro Costa and Luisa Ribas. 2019. AI becomes her: Discussing gender and
artificial intelligence. Technoetic Arts: A Journal of Speculative Research 17, 1/2
(2019), 171 - 193.

Sally Jo Cunningham, Annika Hinze, and David M. Nichols. 2016. Supporting
Gender-Neutral Digital Library Creation: A Case Study Using the GenderMag
Toolkit. In Digital Libraries: Knowledge, Information, and Data in an Open Access
Society, Atsuyuki Morishima, Andreas Rauber, and Chern Li Liew (Eds.). Springer
International Publishing, Cham, 45-50.

Nils Dahlbéck, Arne Jénsson, and Lars Ahrenberg. 1993. Wizard of Oz stud-
ies—why and how. Knowledge-based systems 6, 4 (1993), 258-266.

M. Day, M. R. Penumala, and J. Gonzalez-Sanchez. 2019. Annete: An Intelligent
Tutoring Companion Embedded into the Eclipse IDE. In 2019 IEEE First Interna-
tional Conference on Cognitive Machine Intelligence (CogMI). IEEE, New York,
US, 71-80.

Claudio Leén de la Barra and Broderick Crawford. 2007. Fostering Creativity
Thinking in Agile Software Development. In HCI and Usability for Medicine
and Health Care, Andreas Holzinger (Ed.). Springer Berlin Heidelberg, Berlin,

Kuttal, et al.

Heidelberg, 415-426.

Angel de Vicente and Helen Pain. 1998. Motivation Diagnosis in Intelligent
Tutoring Systems. In Intelligent Tutoring Systems, Barry P. Goettl, Henry M.
Halff, Carol L. Redfield, and Valerie J. Shute (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 86-95.

Edward L Deci, Anja H Olafsen, and Richard M Ryan. 2017. Self-determination
theory in work organizations: The state of a science. Annual Review of Organi-
zational Psychology and Organizational Behavior 4 (2017), 19-43.

Doris M. Dehn and Susanne van Mulken. 2000. The Impact of Animated Interface
Agents: A Review of Empirical Research. Int. J. Hum.-Comput. Stud. 52, 1 (Jan.
2000), 1-22. https://doi.org/10.1006/ijhc.1999.0325

Tom DeMarco and Tim Lister. 2013. Peopleware: Productive Projects and Teams
(3rd Edition) (3rd ed.). Addison-Wesley Professional, Boston, MA, USA.
Melissa C. Duffy and Roger Azevedo. 2015. Motivation matters: Interactions be-
tween achievement goals and agent scaffolding for self-regulated learning within
an intelligent tutoring system. Computers in Human Behavior 52 (2015), 338 —
348. http://www.sciencedirect.com/science/article/pii/S0747563215004227
Rafael Duque and Crescencio Bravo. 2008. Analyzing Work Productivity and
Program Quality in Collaborative Programming. In Proceedings of the 2008 The
Third International Conference on Software Engineering Advances (ICSEA "08).
IEEE Computer Society, Washington, DC, USA, 270-276. https://doi.org/10.
1109/ICSEA.2008.82

Tore Dyba, Erik Arisholm, Dag Sjeberg, Jo Hannay, and Forrest Shull. 2007.
Are Two Heads Better than One? On the Effectiveness of Pair Programming.
Software, IEEE 24 (12 2007), 12 - 15. https://doi.org/10.1109/MS.2007.158
Berland Edelman and Inc. 2010. Creativity and education: Why
it matters. Adobe. Retrieved September 18th, 2019 from http:
//www.adobe.com/aboutadobe/pressroom/pdfs/Adobe_Creativity_and_
Education_Why_It_Matters_study.pdf

Katrina Falkner, Nickolas J.G. Falkner, and Rebecca Vivian. 2013. Collaborative
Learning and Anxiety: A Phenomenographic Study of Collaborative Learning
Activities. In Proceeding of the 44th ACM Technical Symposium on Computer
Science Education (Denver, Colorado, USA) (SIGCSE ’13). Association for Comput-
ing Machinery, New York, NY, USA, 227-232. https://doi.org/10.1145/2445196.
2445268

Carmen Fischer, Charlotte P. Malycha, and Ernestine Schafmann. 2019. The
Influence of Intrinsic Motivation and Synergistic Extrinsic Motivators on
Creativity and Innovation. Frontiers in Psychology 10 (2019), 137. https:
//doi.org/10.3389/fpsyg.2019.00137

ST.Fiske, E.H.P.P.ST. Fiske, and S.E. Taylor. 1991. Social Cognition. McGraw-Hill,
New York City, USA. https://books.google.com/books?id=6Uq3QgAACAA]J
H. Gallis, Erik Arisholm, and Tore Dyb4. 2002. A Transition From Partner
Programming to Pair Programming - an Industrial Case Study. In Workshop
"Pair Programming Installed" in 17th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), Position paper.
ACM, Seattle USA, -.

H. Gallis, E. Arisholm, and T. Dyba. 2003. An initial framework for research
on pair programming. In 2003 International Symposium on Empirical Software
Engineering, 2003. ISESE 2003. Proceedings. ACM, NY, USA, 132-142. https:
//doi.org/10.1109/ISESE.2003.1237972

H. Gallis, E. Arisholm, and T. Dyba. 2003. An initial framework for research
on pair programming. In 2003 International Symposium on Empirical Software
Engineering. ACM, NY, USA, 132-142.

Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and L. Thomas van Binsbergen.
2016. Ask-Elle: an Adaptable Programming Tutor for Haskell Giving Automated
Feedback. International Journal of Artificial Intelligence in Education 27 (02 2016).
https://doi.org/10.1007/s40593-015-0080-x

Nadine Glas and Catherine Pelachaud. 2015. Definitions of Engagement in
Human-Agent Interaction. In International Conference on Affective Computing
and Intelligent Interaction (ACII). IEEE, USA, 944-949. https://doi.org/10.1109/
ACII.2015.7344688

Barney G. Glaser and Anselm L. Strauss. 1967. The Discovery of Grounded Theory:
Strategies for Qualitative Research. Aldine de Gruyter, New York, NY.

Bradley Goodman, Amy Soller, Frank Linton, Robert Gaimari, and The Mitre.
1998. Encouraging student reflection and articulation using a learning com-
panion. International Journal of Artificial Intelligence in Education 9 (1998),
237-255.

Google. 2019. Google text-to-speech python library. https://github.com/
pndurette/gTTS

Google. 2020. Virtual Assistant Google Assistant . https://assistant.google.com/
Jonathan Gratch, Ning Wang, Jillian Gerten, Edward Fast, and Robin Duffy. 2007.
Creating Rapport with Virtual Agents. In Intelligent Virtual Agents, Catherine
Pelachaud, Jean-Claude Martin, Elisabeth André, Gérard Chollet, Kostas Kar-
pouzis, and Danielle Pelé (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
125-138.

[65] J.P. Guilford. 1968. Intelligence, Creativity, and Their Educational Implica-

tions. R. R. Knapp, Open Library. https://books.google.com/books?id=
WESKAQAAMAA]J

https://doi.org/10.1016/j.intcom.2012.05.001
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1093/iwc/iwv046
http://gendermag.org/
https://doi.org/10.1177/02632769922050520
https://doi.org/10.1145/611892.611940
https://doi.org/10.1145/611892.611940
https://doi.org/10.1145/3159450.3159506
https://doi.org/10.1145/3159450.3159516
https://doi.org/10.1109/HICSS.2013.209
https://doi.org/10.1109/ICSE.2007.87
https://doi.org/10.1109/ICSE.2007.87
https://doi.org/10.2307/249688
https://doi.org/10.1006/ijhc.1999.0325
http://www.sciencedirect.com/science/article/pii/S0747563215004227
https://doi.org/10.1109/ICSEA.2008.82
https://doi.org/10.1109/ICSEA.2008.82
https://doi.org/10.1109/MS.2007.158
http://www.adobe.com/aboutadobe/pressroom/pdfs/Adobe_Creativity_and_Education_Why_It_Matters_study.pdf
http://www.adobe.com/aboutadobe/pressroom/pdfs/Adobe_Creativity_and_Education_Why_It_Matters_study.pdf
http://www.adobe.com/aboutadobe/pressroom/pdfs/Adobe_Creativity_and_Education_Why_It_Matters_study.pdf
https://doi.org/10.1145/2445196.2445268
https://doi.org/10.1145/2445196.2445268
https://doi.org/10.3389/fpsyg.2019.00137
https://doi.org/10.3389/fpsyg.2019.00137
https://books.google.com/books?id=6Uq3QgAACAAJ
https://doi.org/10.1109/ISESE.2003.1237972
https://doi.org/10.1109/ISESE.2003.1237972
https://doi.org/10.1007/s40593-015-0080-x
https://doi.org/10.1109/ACII.2015.7344688
https://doi.org/10.1109/ACII.2015.7344688
https://github.com/pndurette/gTTS
https://github.com/pndurette/gTTS
https://assistant.google.com/
https://books.google.com/books?id=WE8kAQAAMAAJ
https://books.google.com/books?id=WE8kAQAAMAAJ

[66] Keun-Woo Han, EunKyoung Lee, and Youngjun Lee. 2010. The Impact of a

Peer-Learning Agent Based on Pair Programming in a Programming Course.
Education, IEEE Transactions on 53 (06 2010), 318 — 327. https://doi.org/10.1109/
TE.2009.2019121

Brian Hanks. 2008. Empirical evaluation of distributed pair programming.
International Journal of Human-Computer Studies 66 (07 2008), 530-544. https:
//doi.org/10.1016/j.ijhcs.2007.10.003

Brian F. Hanks. 2004. Distributed Pair Programming: An Empirical Study. In
Extreme Programming and Agile Methods - XP/Agile Universe 2004, Carmen Zan-
nier, Hakan Erdogmus, and Lowell Lindstrom (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 81-91.

Dai Hasegawa, Justine Cassell, and Kenji Araki. 2010. The Role of Embodi-
ment and Perspective in Direction-Giving Systems. In Proceedings of AAAI Fall
Workshop on Dialog with Robots. AAAI PRESS, USA.

Renate Hauslschmid, Max von Biilow, Bastian Pfleging, and Andreas Butz. 2017.
SupportingTrust in Autonomous Driving. In Proceedings of the 22Nd International
Conference on Intelligent User Interfaces (Limassol, Cyprus) (IUI °17). ACM, New
York, NY, USA, 319-329. https://doi.org/10.1145/3025171.3025198

Charles G. Hill, Maren Haag, Alannah Oleson, Chris Mendez, Nicola Marsden,
Anita Sarma, and Margaret Burnett. 2017. Gender-Inclusiveness Personas vs.
Stereotyping: Can We Have It Both Ways?. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (Denver, Colorado, USA)
(CHI '17). Association for Computing Machinery, New York, NY, USA, 6658-6671.
https://doi.org/10.1145/3025453.3025609

Anthony J. Hillesheim, Christina F. Rusnock, Jason M. Bindewald, and Michael E.
Miller. 2017. Relationships between User Demographics and User Trust in an
Autonomous Agent. Proceedings of the Human Factors and Ergonomics Society
Annual Meeting 61, 1(2017), 314-318. https://doi.org/10.1177/1541931213601560
Kevin Anthony Hoff and Masooda Bashir. 2015. Trust in Automation: Integrating
Empirical Evidence on Factors That Influence Trust. Human Factors 57, 3 (2015),
407-434. https://doi.org/10.1177/0018720814547570 PMID: 25875432.

IBM. 2019. Eclipse IDE. https://www.eclipse.org/

Paul Jaccard. 1901. Etude de la distribution florale dans une portion des Alpes
et du Jura. Bulletin de la Societe Vaudoise des Sciences Naturelles 37 (01 1901),
547-579. https://doi.org/10.5169/seals- 266450

Mohit Jain, Pratyush Kumar, Ishita Bhansali, Q. Vera Liao, Khai Truong, and
Shwetak Patel. 2018. FarmChat: A Conversational Agent to Answer Farmer
Queries. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 4, Article 170
(Dec. 2018), 22 pages. https://doi.org/10.1145/3287048

Mohit Jain, Pratyush Kumar, Ramachandra Kota, and Shwetak N. Patel. 2018.
Evaluating and Informing the Design of Chatbots. In Proceedings of the 2018
Designing Interactive Systems Conference (Hong Kong, China) (DIS ’18). As-
sociation for Computing Machinery, New York, NY, USA, 895-906. https:
//doi.org/10.1145/3196709.3196735

D. James and S. Clarke. 1998. Women, men, and interruptions: A critical review.
In D. Tannen (Ed.), Oxford studies in sociolinguistics. Gender and conversational
interaction. Oxford University Press, UK, 231-280.

Lindsay Jarratt, Nicholas A. Bowman, K.C. Culver, and Alberto Maria Segre.
2019. A Large-Scale Experimental Study of Gender and Pair Composition in
Pair Programming. In Proceedings of the 2019 ACM Conference on Innovation and
Technology in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE ’19).
Association for Computing Machinery, New York, NY, USA, 176-181. https:
//doi.org/10.1145/3304221.3319782

Will Jerigan, Amber Horvath, Michael Lee, Margaret Burnett, Cuilty Taylor,
Sandeep Kuttal, Anicia Peters, Irwin Kwan, Faezeh Bahmani, and Andrew Ko.
2015. A Principled Evaluation for a Principled Idea Garden. In 2015 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, USA.
https://doi.org/10.1109/VLHCC.2015.7357222

William Jernigan, Amber Horvath, Michael Lee, Margaret Burnett, Taylor
Cuilty, Sandeep Kuttal, Anicia Peters, Irwin Kwan, Faezeh Bahmani, Andrew
Ko, Christopher J. Mendez, and Alannah Oleson. 2017. General principles for
a Generalized Idea. Journal of Visual Languages & Computing 39 (2017), 51 —
65. https://doi.org/10.1016/j.jvlc.2017.04.005 Special Issue on Programming
and Modelling Tools.

Xiaoming Jiang and Marc D. Pell. 2015. On how the brain decodes vocal cues
about speaker confidence. Cortex 66 (2015), 9 — 34. http://www.sciencedirect.
com/science/article/pii/S0010945215000593

Ewa Kacewicz, James W. Pennebaker, Matthew Davis, Moongee Jeon, and
Arthur C. Graesser. 2014. Pronoun Use Reflects Standings in Social Hier-
archies. Journal of Language and Social Psychology 33, 2 (2014), 125-143.
https://doi.org/10.1177/0261927X13502654

Peter H. Kahn, Nathan G. Freier, Takayuki Kanda, Hiroshi Ishiguro, Jolina H.
Ruckert, Rachel L. Severson, and Shaun K. Kane. 2008. Design Patterns for
Sociality in Human-Robot Interaction. In Proceedings of the 3rd ACM/IEEE Inter-
national Conference on Human Robot Interaction (Amsterdam, The Netherlands)
(HRI °08). Association for Computing Machinery, New York, NY, USA, 97-104.
https://doi.org/10.1145/1349822.1349836

[100

[101

[104

Trade-offs for Substituting a Human with an Agent in a Pair Programming Context: The Good, the Bad, and the Ugly

[85]

[86

[87]

[88]

[89

[90

[o1

[92

[93

[94

[95

[96]

[97

[98

[99

o o
AER)

CHI 21, May 8-13, 2021, Yokohama, Japan

Alexander Karan, Robert Rosenthal, and Megan L. Robbins. 2019. Meta-analytic
evidence that we-talk predicts relationship and personal functioning in romantic
couples. Journal of Social and Personal Relationships 36, 9 (2019), 2624-2651.
https://doi.org/10.1177/0265407518795336

Neha Katira, Laurie Williams, Eric Wiebe, Carol Miller, Suzanne Balik, and Ed
Gehringer. 2004. On Understanding Compatibility of Student Pair Programmers.
In Proceedings of the 35th SIGCSE Technical Symposium on Computer Science
Education (Norfolk, Virginia, USA) (SIGCSE '04). Association for Computing
Machinery, New York, NY, USA, 7-11. https://doi.org/10.1145/971300.971307
S. Kaur Kuttal, K. Gerstner, and A. Bejarano. 2019. Remote Pair Programming
in Online CS Education: Investigating through a Gender Lens. In 2019 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
USA, 75-85.

Iman Keivanloo, Juergen Rilling, and Ying Zou. 2014. Spotting Working Code
Examples. In Proceedings of the 36th International Conference on Software Engi-
neering (Hyderabad, India) (ICSE 2014). Association for Computing Machinery,
New York, NY, USA, 664-675. https://doi.org/10.1145/2568225.2568292

Kisub Kim, Dongsun Kim, Tegawendé F. Bissyandé, Eunjong Choi, Li Li, Jacques
Klein, and Yves Le Traon. 2018. FaCoY: A Code-to-Code Search Engine. In
Proceedings of the 40th International Conference on Software Engineering (Gothen-
burg, Sweden) (ICSE ’18). Association for Computing Machinery, New York, NY,
USA, 946-957. https://doi.org/10.1145/3180155.3180187

Barbara Kitchenham, S.L. Pfleeger, L.M. Pickard, Peter Jones, David Hoaglin,
Khaled Emam, and Jarrett Rosenberg. 2002. Preliminary Guidelines for Empirical
Research in Software Engineering. Software Engineering, IEEE Transactions on
28 (09 2002), 721- 734. https://doi.org/10.1109/TSE.2002.1027796

Dominique Knutsen and Ludovic Le Bigot. 2014. The Influence of Refer-
ence Acceptance and Reuse on Conversational Memory Traces. Journal of
experimental psychology. Learning, memory, and cognition 41 (07 2014). https:
//doi.org/10.1037/xlm0000036

Dominique Knutsen, Ludovic Le Bigot, and Christine Ros. 2017. Explicit feedback
from users attenuates memory biases in human-system dialogue. International
Journal of Human-Computer Studies 97 (2017), 77 — 87. http://www.sciencedirect.
com/science/article/pii/S1071581916301045

Dominique Knutsen, Christine Ros, and Ludovic Le Bigot. 2016. Generating
References in Naturalistic Face-to-Face and Phone-Mediated Dialog Settings.
Topics in Cognitive Science 8 (08 2016). https://doi.org/10.1111/tops.12218
Andrew J. Ko and Brad A. Myers. 2004. Designing the Whyline: A Debugging
Interface for Asking Questions about Program Behavior. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Vienna, Austria)
(CHI °04). Association for Computing Machinery, New York, NY, USA, 151-158.
https://doi.org/10.1145/985692.985712

Andrew]. Ko and Brad A. Myers. 2008. Debugging Reinvented: Asking and An-
swering Why and Why Not Questions about Program Behavior. In Proceedings
of the 30th International Conference on Software Engineering (Leipzig, Germany)
(ICSE °08). Association for Computing Machinery, New York, NY, USA, 301-310.
https://doi.org/10.1145/1368088.1368130

Kuttal, Kwasny, Ong, and Robe. 2020. Correctness and Progress Metrics . https:
//docs.google.com/spreadsheets/d/1UawMLVACqLjC6JH7I5vwW VQLCv6ph-
IkClIZDwHkM3Y/edit?usp=sharing

S. K. Kuttal, J. Myers, S. Gurka, D. Magar, D. Piorkowski, and R. Bellamy. 2020.
Towards Designing Conversational Agents for Pair Programming: Accounting
for Creativity Strategies and Conversational Styles. In 2020 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). IEEE, USA, 1-11.
Danielle L. Jones and Scott D. Fleming. 2013. What use is a backseat driver? A
qualitative investigation of pair programming. In Proceedings of IEEE Symposium
on Visual Languages and Human-Centric Computing, VL/HCC. IEEE, USA, 103—
110.

Thomas K Landauer. 1987. Psychology as a mother of invention. ACM SIGCHI
Bulletin 18, 4 (1987), 333-335.

Susan Leavy. 2018. Gender Bias in Artificial Intelligence: The Need for Diversity
and Gender Theory in Machine Learning. In Proceedings of the 1st International
Workshop on Gender Equality in Software Engineering (Gothenburg, Sweden)
(GE ’18). Association for Computing Machinery, New York, NY, USA, 14-16.
https://doi.org/10.1145/3195570.3195580

Susan Leavy. 2018. Gender Bias in Artificial Intelligence: The Need for Diversity
and Gender Theory in Machine Learning. In Proceedings of the 1st International
Workshop on Gender Equality in Software Engineering (Gothenburg, Sweden)
(GE ’18). Association for Computing Machinery, New York, NY, USA, 14-16.
https://doi.org/10.1145/3195570.3195580

Marvin Levine. 1988. Effective problem solving. Prentice Hall, NJ, USA.
Clayton Lewis. 1982. Using the "thinking-aloud" method in cognitive interface
design. IBM T.J. Watson Research Center, Yorktown Heights, N.Y.

Colleen M. Lewis and Niral Shah. 2015. How Equity and Inequity Can Emerge in
Pair Programming. In Proceedings of the Eleventh Annual International Conference
on International Computing Education Research (Omaha, Nebraska, USA) (ICER
’15). Association for Computing Machinery, New York, NY, USA, 41-50. https:
//doi.org/10.1145/2787622.2787716

https://doi.org/10.1109/TE.2009.2019121
https://doi.org/10.1109/TE.2009.2019121
https://doi.org/10.1016/j.ijhcs.2007.10.003
https://doi.org/10.1016/j.ijhcs.2007.10.003
https://doi.org/10.1145/3025171.3025198
https://doi.org/10.1145/3025453.3025609
https://doi.org/10.1177/1541931213601560
https://doi.org/10.1177/0018720814547570
https://www.eclipse.org/
https://doi.org/10.5169/seals-266450
https://doi.org/10.1145/3287048
https://doi.org/10.1145/3196709.3196735
https://doi.org/10.1145/3196709.3196735
https://doi.org/10.1145/3304221.3319782
https://doi.org/10.1145/3304221.3319782
https://doi.org/10.1109/VLHCC.2015.7357222
https://doi.org/10.1016/j.jvlc.2017.04.005
http://www.sciencedirect.com/science/article/pii/S0010945215000593
http://www.sciencedirect.com/science/article/pii/S0010945215000593
https://doi.org/10.1177/0261927X13502654
https://doi.org/10.1145/1349822.1349836
https://doi.org/10.1177/0265407518795336
https://doi.org/10.1145/971300.971307
https://doi.org/10.1145/2568225.2568292
https://doi.org/10.1145/3180155.3180187
https://doi.org/10.1109/TSE.2002.1027796
https://doi.org/10.1037/xlm0000036
https://doi.org/10.1037/xlm0000036
http://www.sciencedirect.com/science/article/pii/S1071581916301045
http://www.sciencedirect.com/science/article/pii/S1071581916301045
https://doi.org/10.1111/tops.12218
https://doi.org/10.1145/985692.985712
https://doi.org/10.1145/1368088.1368130
https://docs.google.com/spreadsheets/d/1UawMLVACqLjC6JH7I5vwWVQLCv6ph-lkCllZDwHkM3Y/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1UawMLVACqLjC6JH7I5vwWVQLCv6ph-lkCllZDwHkM3Y/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1UawMLVACqLjC6JH7I5vwWVQLCv6ph-lkCllZDwHkM3Y/edit?usp=sharing
https://doi.org/10.1145/3195570.3195580
https://doi.org/10.1145/3195570.3195580
https://doi.org/10.1145/2787622.2787716
https://doi.org/10.1145/2787622.2787716

CHI ’21, May 8-13, 2021, Yokohama, Japan

Zhen Li and Eileen Kraemer. 2014. Social Effects of Pair Programming Miti-
gate Impact of Bounded Rationality. In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education (Atlanta, Georgia, USA) (SIGCSE
’14). Association for Computing Machinery, New York, NY, USA, 385-390.
https://doi.org/10.1145/2538862.2538968

Dapeng Liu, Andrian Marcus, Denys Poshyvanyk, and Vaclav Rajlich. 2007.
Feature Location via Information Retrieval Based Filtering of a Single Scenario
Execution Trace. In Proceedings of the Twenty-Second IEEE/ACM International
Conference on Automated Software Engineering (Atlanta, Georgia, USA) (ASE "07).
Association for Computing Machinery, New York, NY, USA, 234-243. https:
//doi.org/10.1145/1321631.1321667

Zhigiang Liu and Dieter J Schonwetter. 2004. Teaching creativity in engineering.
International Journal of Engineering Education 20, 5 (2004), 801-808.

Irene Lopatovska and Harriet Williams. 2018. Personification of the Amazon
Alexa: BFF or a Mindless Companion. In Proceedings of the 2018 Conference on
Human Information Interaction & Retrieval (New Brunswick, NJ, USA) (CHIIR
’18). Association for Computing Machinery, New York, NY, USA, 265-268. https:
//doi.org/10.1145/3176349.3176868

Ewa Luger and Abigail Sellen. 2016. "Like Having a Really Bad PA": The Gulf
between User Expectation and Experience of Conversational Agents. In Pro-
ceedings of the 2016 CHI Conference on Human Factors in Computing Systems
(San Jose, California, USA) (CHI ’16). Association for Computing Machinery,
New York, NY, USA, 5286-5297. https://doi.org/10.1145/2858036.2858288

A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A. Sergeyev. 2005. Static
techniques for concept location in object-oriented code. In 13th International
Workshop on Program Comprehension (IWPC’05). IEEE Computer Society, Los
Alamitos, CA, USA, 33-42.

Yukihiro Matsubara and Mitsuo Nagamachi. 1996. Motivation system and
human model for intelligent tutoring. In Intelligent Tutoring Systems, Claude
Frasson, Gilles Gauthier, and Alan Lesgold (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 139-147.

Charlie McDowell, Linda Werner, Heather Bullock, and Julian Fernald. 2002. The
Effects of Pair-Programming on Performance in an Introductory Programming
Course. In Proceedings of the 33rd SIGCSE Technical Symposium on Computer Sci-
ence Education (Cincinnati, Kentucky) (SIGCSE ’02). Association for Computing
Machinery, New York, NY, USA, 38-42. https://doi.org/10.1145/563340.563353
Charles Mcdowell, Linda Werner, Heather Bullock, and Julian Fernald. 2006.
Pair programming improves student retention, confidence, and program quality.
Commun. ACM 49 (08 2006), 90-95. https://doi.org/10.1145/1145293

Charlie McDowell, Linda Werner, Heather E. Bullock, and Julian Fernald. 2003.
The Impact of Pair Programming on Student Performance, Perception and Persis-
tence. In Proceedings of the 25th International Conference on Software Engineering
(Portland, Oregon) (ICSE ’03). IEEE Computer Society, USA, 602-607.
Meiliana, Irwandhi Septian, Ricky Setiawan Alianto, Daniel, and Ford Lumban
Gaol. 2017. Automated Test Case Generation from UML Activity Diagram and
Sequence Diagram using Depth First Search Algorithm. Procedia Computer
Science 116 (2017), 629 - 637. http://www.sciencedirect.com/science/article/pii/
$1877050917320732 Discovery and innovation of computer science technology
in artificial intelligence era: The 2nd International Conference on Computer
Science and Computational Intelligence (ICCSCI 2017).

Christopher Mendez, Hema Susmita Padala, Zoe Steine-Hanson, Claudia Hilder-
brand, Amber Horvath, Charles Hill, Logan Simpson, Nupoor Patil, Anita
Sarma, and Margaret Burnett. 2018. Open Source Barriers to Entry, Revis-
ited: A Sociotechnical Perspective. In Proceedings of the 40th International
Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18). Asso-
ciation for Computing Machinery, New York, NY, USA, 1004-1015. https:
//doi.org/10.1145/3180155.3180241

M. Minsky, R. Kurzweil, and S. Mann. 2013. The society of intelligent veillance.
In 2013 IEEE International Symposium on Technology and Society (ISTAS): Social
Implications of Wearable Computing and Augmediated Reality in Everyday Life.
IEEE, USA, 13-17.

Matheus Monteiro, Erica Souza, Andre Endo, and Nandamudi Vijaykumar. 2019.
Analyzing graph-based algorithms employed to generate test cases from finite
state machines. In 2019 IEEE Latin American Test Symposium (LATS). IEEE, USA.
https://doi.org/10.1109/LATW.2019.8704603

Susanne van Mulken, Elisabeth André, and Jochen Miiller. 1999. An Empirical
Study on the Trustworthiness of Life-like Interface Agents. In Proceedings of
the HCI International *99 (the 8th International Conference on Human-Computer
Interaction) on Human-Computer Interaction: Communication, Cooperation, and
Application Design-Volume 2 - Volume 2. L. Erlbaum Associates Inc., Hillsdale,
NJ, USA, 152-156.

Kumiko Murata. 1994. Intrusive or co-operative? A cross-cultural study of inter-
ruption. Journal of Pragmatics 21, 4 (1994), 385 - 400. http://www.sciencedirect.
com/science/article/pii/0378216694900116

Emerson Murphy-Hill and Gail C. Murphy. 2011. Peer Interaction Effectively,
yet Infrequently, Enables Programmers to Discover New Tools. In Proceedings of
the ACM 2011 Conference on Computer Supported Cooperative Work (Hangzhou,
China) (CSCW ’11). Association for Computing Machinery, New York, NY, USA,

[122

[123

[124]

[125]

[126

[127

— =
ISR Y
2%

[130

[131

[132

[133

[134]

[135

[136

[137

[138

[139

[140

[141]

[142

Kuttal, et al.

405-414. https://doi.org/10.1145/1958824.1958888

Nachiappan Nagappan, Laurie Williams, Miriam Ferzli, Eric Wiebe, Kai Yang,
Carol Miller, and Suzanne Balik. 2003. Improving the CS1 Experience with Pair
Programming. SIGCSE Bull. 35, 1 (Jan. 2003), 359-362. https://doi.org/10.1145/
792548.612006

Sik Hung Ng, Mark Brooke, and Michael Dunne. 1995. Interruption and Influence
in Discussion Groups. Journal of Language and Social Psychology 14, 4 (1995),
369-381. https://doi.org/10.1177/0261927X950144003

Haoran Niu, Iman Keivanloo, and Ying Zou. 2017. Learning to rank code
examples for code search engines. Empirical Software Engineering 22, 1 (2017),
259-291.

John Nosek. 1998. The Case for Collaborative Programming. Commun. ACM 41
(03 1998). https://doi.org/10.1145/272287.272333

Clem O’Donnell, Jim Buckley, Abdulhussain Mahdi, John Nelson, and Michael
English. 2015. Evaluating Pair-Programming for Non-Computer Science Major
Students. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education (Kansas City, Missouri, USA) (SIGCSE ’15). Association for
Computing Machinery, New York, NY, USA, 569-574. https://doi.org/10.1145/
2676723.2677289

Sharon Oviatt and Philip Cohen. 2000. Perceptual User Interfaces: Multimodal
Interfaces That Process What Comes Naturally. Commun. ACM 43, 3 (March
2000), 45-53. https://doi.org/10.1145/330534.330538

Frank Pajares. 2002. Overview of social cognitive theory and of self-efficacy.
David Walsh Palmieri. 2002. Knowledge Management Through Pair Program-
ming.

George Polya. 2004. How to solve it: A new aspect of mathematical method. Vol. 85.
Princeton university press, NJ, USA.

Leo Porter and Beth Simon. 2013. Retaining Nearly One-Third More Majors
with a Trio of Instructional Best Practices in CS1. In Proceeding of the 44th
ACM Technical Symposium on Computer Science Education (Denver, Colorado,
USA) (SIGCSE ’13). Association for Computing Machinery, New York, NY, USA,
165-170. https://doi.org/10.1145/2445196.2445248

Lutz Prechelt, Ulrich Stark, and Stephan Salinger. 2009. 7 Types of Cooperation
Episodes in Side-by-Side Programming. In Proc. 21st Annual Workshop of the
Psychology of Programming Interest Group (PPIG *09). ACM, USA.

Mukund Raghothaman, Yi Wei, and Youssef Hamadi. 2016. SWIM: Synthesizing
What i Mean: Code Search and Idiomatic Snippet Synthesis. In Proceedings
of the 38th International Conference on Software Engineering (Austin, Texas)
(ICSE ’16). Association for Computing Machinery, New York, NY, USA, 357-367.
https://doi.org/10.1145/2884781.2884808

P. Rane. 2017. Automatic Generation of Test Cases for Agile using Natural
Language Processing.

Genaro Rebolledo-Mendez, Sara de Freitas, Jose Rafael Rojano-Caceres, and
Alma Rosa Garcia-Gaona. 2010. An Empirical Examination of the Relation
Between Attention and Motivation in Computer-Based Education: a Modeling
Approach. In Proceedings of the Twenty-Third International Florida Artificial
Intelligence Research Society Conference, May 19-21, 2010, Daytona Beach, Florida,
USA, Hans W. Guesgen and R. Charles Murray (Eds.). AAAI Press, USA, 74-79.
Genaro Rebolledo-Mendez, Benedict du Boulay, and Rosemary Luckin. 2006.
Motivating the Learner: An Empirical Evaluation. In Intelligent Tutoring Systems,
Mitsuru Ikeda, Kevin D. Ashley, and Tak-Wai Chan (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 545-554.

Laurel D Riek. 2012. Wizard of oz studies in hri: a systematic review and new
reporting guidelines. Journal of Human-Robot Interaction 1, 1 (2012), 119-136.
Peter Robe. 2020. Designing PairBuddy - Conversational Agent for Pair. https:
//drive.google.com/drive/folders/1vIOdro0pg8C1jSB42KzYrDRKOOPVhqZ1?
usp=sharing

T. J. Robertson, Shrinu Prabhakararao, Margaret Burnett, Curtis Cook, Joseph R.
Ruthruff, Laura Beckwith, and Amit Phalgune. 2004. Impact of Interrup-
tion Style on End-User Debugging. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (Vienna, Austria) (CHI '04). Asso-
ciation for Computing Machinery, New York, NY, USA, 287-294. https:
//doi.org/10.1145/985692.985729

Fernando J. Rodriguez, Kimberly Michelle Price, and Kristy Elizabeth Boyer.
2017. Exploring the Pair Programming Process: Characteristics of Effective
Collaboration. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (Seattle, Washington, USA) (SIGCSE ’17). Association
for Computing Machinery, New York, NY, USA, 507-512. https://doi.org/10.
1145/3017680.3017748

Omar Ruvalcaba, Linda Werner, and Jill Denner. 2016. Observations of Pair
Programming: Variations in Collaboration Across Demographic Groups. In Pro-
ceedings of the 47th ACM Technical Symposium on Computing Science Education
(Memphis, Tennessee, USA) (SIGCSE ’16). Association for Computing Machinery,
New York, NY, USA, 90-95. https://doi.org/10.1145/2839509.2844558

Jeffrey S. Saltz and Ivan Shamshurin. 2019. Exploring pair programming beyond
computer science: a case study in its use in data science/data engineering.
International Journal of Higher Education and Sustainability 2, 4 (2019), 265-278.
https://doi.org/10.1504/IJHES.2019.103360

https://doi.org/10.1145/2538862.2538968
https://doi.org/10.1145/1321631.1321667
https://doi.org/10.1145/1321631.1321667
https://doi.org/10.1145/3176349.3176868
https://doi.org/10.1145/3176349.3176868
https://doi.org/10.1145/2858036.2858288
https://doi.org/10.1145/563340.563353
https://doi.org/10.1145/1145293
http://www.sciencedirect.com/science/article/pii/S1877050917320732
http://www.sciencedirect.com/science/article/pii/S1877050917320732
https://doi.org/10.1145/3180155.3180241
https://doi.org/10.1145/3180155.3180241
https://doi.org/10.1109/LATW.2019.8704603
http://www.sciencedirect.com/science/article/pii/0378216694900116
http://www.sciencedirect.com/science/article/pii/0378216694900116
https://doi.org/10.1145/1958824.1958888
https://doi.org/10.1145/792548.612006
https://doi.org/10.1145/792548.612006
https://doi.org/10.1177/0261927X950144003
https://doi.org/10.1145/272287.272333
https://doi.org/10.1145/2676723.2677289
https://doi.org/10.1145/2676723.2677289
https://doi.org/10.1145/330534.330538
https://doi.org/10.1145/2445196.2445248
https://doi.org/10.1145/2884781.2884808
https://drive.google.com/drive/folders/1vIOdro0pg8C1jSB42KzYrDRKO0PVhqZ1?usp=sharing
https://drive.google.com/drive/folders/1vIOdro0pg8C1jSB42KzYrDRKO0PVhqZ1?usp=sharing
https://drive.google.com/drive/folders/1vIOdro0pg8C1jSB42KzYrDRKO0PVhqZ1?usp=sharing
https://doi.org/10.1145/985692.985729
https://doi.org/10.1145/985692.985729
https://doi.org/10.1145/3017680.3017748
https://doi.org/10.1145/3017680.3017748
https://doi.org/10.1145/2839509.2844558
https://doi.org/10.1504/IJHES.2019.103360

Trade-offs for Substituting a Human with an Agent in a Pair Programming Context: The Good, the Bad, and the Ugly

[143]

[144

[145]

[146

[147

[148

[149

[150

[151

[152

[153
[154
[155
[156

[157

[158

[159

[160
[161

[162

[163

[164
[165

[166

[167

T. Savage, M. Revelle, and D. Poshyvanyk. 2010. FLAT3: feature location and
textual tracing tool. In 2010 ACM/IEEE 32nd International Conference on Software
Engineering, Vol. 2. ACM, USA, 255-258.

Philippe G. Schyns, Lucy S. Petro, and Marie L. Smith. 2009. Transmission
of Facial Expressions of Emotion Co-Evolved with Their Efficient Decoding
in the Brain: Behavioral and Brain Evidence. PLOS ONE 4, 5 (05 2009), 1-16.
https://doi.org/10.1371/journal.pone.0005625

C. B. Seaman. 1999. "Qualitative Methods in Empirical Studies of Software
Engineering". IEEE Transactions on Software Engineering 25, 4 (1999), 557-572.
A. Seeger,]J. Pfeiffer, and A. Heinzl. 2017. When Do We Need a Human? An-
thropomorphic Design and Trustworthiness of Conversational Agents. In Pro-
ceedings of the SixteenthAnnual Pre-ICIS Workshop on HCI Research in MIS. ACM,
USA, 1-5.

Ameneh Shamekhi, Q. Vera Liao, Dakuo Wang, Rachel K. E. Bellamy, and Thomas
Erickson. 2018. Face Value? Exploring the Effects of Embodiment for a Group
Facilitation Agent. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (Montreal QC, Canada) (CHI '18). Association for Computing
Machinery, New York, NY, USA, 1-13. https://doi.org/10.1145/3173574.3173965
R. Sharma, S. Gulia, and K. K. Biswas. 2014. Automated generation of activity
and sequence diagrams from natural language requirements. In 9th International
Conference on Evaluation of Novel Approaches to Software Engineering (ENASE).
SCITEPRESS Digital Library, Portugal, 1-9.

Arun Shekhar and Nicola Marsden. 2018. Cognitive Walkthrough of a Learning
Management System with Gendered Personas. In Proceedings of the 4th Con-
ference on Gender & IT (Heilbronn, Germany) (GenderIT ’18). Association for
Computing Machinery, New York, NY, USA, 191-198. https://doi.org/10.1145/
3196839.3196869

F. Shull, J. Singer, and D. L K. Sjeberg. 2008. Guide to Advanced Empirical
Software Engineering: Springer.

Candace L. Sidner, Christopher Lee, Cory D. Kidd, Neal Lesh, and Charles Rich.
2005. Explorations in engagement for humans and robots. Artificial Intelligence
166, 1 (2005), 140 — 164. http://www.sciencedirect.com/science/article/pii/
50004370205000512

Simon and Susan Snowdon. 2011. Explaining Program Code: Giving Students
the Answer Helps - but Only Just. In Proceedings of the Seventh International
Workshop on Computing Education Research (Providence, Rhode Island, USA)
(ICER ’11). Association for Computing Machinery, New York, NY, USA, 93-100.
https://doi.org/10.1145/2016911.2016931

Zach Sims. 2020. Code Academy. https://www.codecademy.com/

Arsenij Solovjev. 2020. Saros Project. https://www.saros-project.org/

Jorg Spieler. 2020. UCDetector. Open Source. http://www.ucdetector.org/
Hugo Spiers, Bradley Love, Mike Pelley, Charlotte Gibb, and Robin Murphy.
2016. Anterior Temporal Lobe Tracks the Formation of Prejudice. Journal of
Cognitive Neuroscience 29 (10 2016), 1-15. https://doi.org/10.1162/jocn_a_01056
Lee Sproull, Mani Subramani, Sara Kiesler, Janet H. Walker, and Keith Waters.
1996. When the Interface is a Face. Hum.-Comput. Interact. 11, 2 (June 1996),
97-124. https://doi.org/10.1207/s15327051hci1102_1

R. Strachan, A. Peixoto, I. Emembolu, and M. T. Restivo. 2018. Women in
engineering: Addressing the gender gap, exploring trust and our unconscious
bias. In 2018 IEEE Global Engineering Education Conference (EDUCON). IEEE,
USA, 2088-2093.

Anselm L. Strauss and Juliet M. Corbin. 1998. Basics of qualitative research:
techniques and procedures for developing grounded theory. Sage Publications,
Thousand Oaks, California, USA. XIII, 312 s pages.

Holotech Studios. 2020. Facerig. https://facerig.com/

S. Shyam Sundar and Jinyoung Kim. 2019. Machine Heuristic: When We Trust
Computers More than Humans with Our Personal Information. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY,
USA, 1-9. https://doi.org/10.1145/3290605.3300768

Akikazu Takeuchi and Taketo Naito. 1995. Situated Facial Displays: Towards
Social Interaction. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Denver, Colorado, USA) (CHI ’95). ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 450-455. https://doi.org/10.1145/
223904.223965

Germany TeamViewer AG. 2019. TeamViewer. https://www.teamviewer.com/
en-us/

TechSmith. 2019. Morae. http://www.techsmith.com/morae.asp
Diana-Cezara Toader, Gratiela Boca, Rita Toader, Mara Macelaru, Cezar Toader,
Diana Ighian, and Adrian T. Radulescu. 2019. The Effect of Social Presence
and Chatbot Errors on Trust. Sustainability 12, 1 (Dec 2019), 256. https:
//doi.org/10.3390/sul12010256

E. Paul Torrance. 1970. Influence of Dyadic Interaction on Creative Functioning.
Psychological Reports 26, 2 (1970), 391-394. https://doi.org/10.2466/pr0.1970.26.
2.391

Despina Tsompanoudi, Maya Satratzemi, Stelios Xinogalos, and Leonidas
Karamitopoulos. 2019. An Empirical Study on Factors related to Distributed
Pair Programming. (04 2019). https://www.learntechlib.org/p/208576

[168

[172

[173]

[174

[175

[176

[177]

[178

[179

[180

[181

[182

[183

[184

[185

[186

[187

[188]

[189

[190

CHI 21, May 8-13, 2021, Yokohama, Japan

Mengping Tsuei. 2017. Learning behaviours of low-achieving children’s math-
ematics learning in using of helping tools in a synchronous peer-tutoring
system. Interactive Learning Environments 25, 2 (2017), 147-161. https:
//doi.org/10.1080/10494820.2016.1276078

ALINA Tugend. 2007. Why is asking for help so difficult.

Susanne van Mulken, Elisabeth André, and Jochen Miiller. 1998. The Persona
Effect: How Substantial Is It?. In People and Computers XIII, Hilary Johnson,
Lawrence Nigay, and Christopher Roast (Eds.). Springer London, London, 53-66.
Mihaela Vorvoreanu, Lingyi Zhang, Yun-Han Huang, Claudia Hilderbrand, Zoe
Steine-Hanson, and Margaret Burnett. 2019. From Gender Biases to Gender-
Inclusive Design: An Empirical Investigation. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI ’19). ACM, New York, NY, USA, Article 53, 14 pages. https://doi.org/10.
1145/3290605.3300283

Tony Wagner and Robert A Compton. 2012. Creating innovators: The making of
young people who will change the world. Simon and Schuster, USA.

P. Wargnier, G. Carletti, Y. Laurent-Corniquet, S. Benveniste, P. Jouvelot, and
A. Rigaud. 2016. Field evaluation with cognitively-impaired older adults of
attention management in the Embodied Conversational Agent Louise. In 2016
IEEE International Conference on Serious Games and Applications for Health
(SeGAH). IEEE Computer Society, Los Alamitos, CA, USA, 1-8. https://doi.org/
10.1109/SeGAH.2016.7586282

Katharina Weitz, Dominik Schiller, Ruben Schlagowski, Tobias Huber, and
Elisabeth André. 2019. "Do You Trust Me?": Increasing User-Trust by Integrating
Virtual Agents in Explainable Al Interaction Design. In Proceedings of the 19th
ACM International Conference on Intelligent Virtual Agents (Paris, France) (IVA
’19). Association for Computing Machinery, New York, NY, USA, 7-9. https:
//doi.org/10.1145/3308532.3329441

Linda L. Werner, Brian Hanks, and Charlie McDowell. 2004. Pair-Programming
Helps Female Computer Science Students. J. Educ. Resour. Comput. 4, 1 (March
2004), 4-es. https://doi.org/10.1145/1060071.1060075

CANDACE WEST and DON H. ZIMMERMAN. 1987. Doing Gender. Gender &
Society 1, 2 (1987), 125-151. https://doi.org/10.1177/0891243287001002002
Jason Weston, Antoine Bordes, Sumit Chopra, Alexander Rush, Bart van Mer-
riénboer, Armand Joulin, and Tomas Mikolov. 2015. Towards AI-Complete
Question Answering: A Set of Prerequisite Toy Tasks. arXiv:1502.05698 [cs.Al]
Wayne A Wickelgren. 1974. How to solve problems: Elements of a theory of
problems and problem solving. WH Freeman San Francisco, USA.

Laurie Williams and Bob Kessler. 2000. The Effects of "Pair-Pressure" and
"Pair-Learning" on Software Engineering Education. In Proceedings of the 13th
Conference on Software Engineering Education & Training (CSEET "00). IEEE
Computer Society, USA, 59.

Laurie Williams and Robert Kessler. 2002. Pair Programming Illuminated.
Addison-Wesley Longman Publishing Co., Inc., USA.

L. Williams, R. R. Kessler, W. Cunningham, and R. Jeffries. 2000. Strengthening
the case for pair programming. IEEE Software 17, 4 (2000), 19-25.

Laurie Williams, D. Scott McCrickard, Lucas Layman, and Khaled Hussein. 2008.
Eleven Guidelines for Implementing Pair Programming in the Classroom. In
Proceedings of the Agile 2008 (AGILE "08). IEEE Computer Society, USA, 445-452.
https://doi.org/10.1109/Agile.2008.12

Laurie Williams, Charlie McDowell, Nachiappan Nagappan, Julian Fernald, and
Linda Werner. 2003. Building Pair Programming Knowledge through a Family
of Experiments. In Proceedings of the 2003 International Symposium on Empirical
Software Engineering (ISESE "03). IEEE Computer Society, USA, 143.

Laurie Williams, Eric Wiebe, Kai Yang, Miriam Ferzli, and Carol Miller. 2002. In
Support of Pair Programming in the Introductory Computer Science Course.
Computer Science Education 12, 3 (2002), 197-212. https://doi.org/10.1076/csed.
12.3.197.8618

Laurie A. Williams. 2010. Pair Programming. John Wiley & Sons, USA. 311-322
pages.

Laurie A. Williams and Robert R. Kessler. 2000. All I Really Need to Know about
Pair Programming I Learned in Kindergarten. Commun. ACM 43, 5 (May 2000),
108-114. https://doi.org/10.1145/332833.332848

Aaron Wilson, Margaret Burnett, Laura Beckwith, Orion Granatir, Ledah Cas-
burn, Curtis Cook, Mike Durham, and Gregg Rothermel. 2003. Harnessing
Curiosity to Increase Correctness in End-User Programming. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (Ft. Lauderdale,
Florida, USA) (CHI °03). Association for Computing Machinery, New York, NY,
USA, 305-312. https://doi.org/10.1145/642611.642665

James Wilson and Daniel Rosenberg. 1988. Rapid prototyping for user inter-
face design. In Handbook of human-computer interaction. Elsevier, Amsterdam,
Netherlands, 859-875.

Anita Woolley, Ishani Aggarwal, and Thomas Malone. 2015. Collective Intelli-
gence and Group Performance. Current Directions in Psychological Science 24
(12 2015), 420-424. https://doi.org/10.1177/0963721415599543

Nick Yee, Jeremy N Bailenson, and Kathryn Rickertsen. 2007. A Meta-analysis
of the Impact of the Inclusion and Realism of Human-like Faces on User Experi-
ences in Interfaces. In Proceedings of the SIGCHI Conference on Human Factors

https://doi.org/10.1371/journal.pone.0005625
https://doi.org/10.1145/3173574.3173965
https://doi.org/10.1145/3196839.3196869
https://doi.org/10.1145/3196839.3196869
http://www.sciencedirect.com/science/article/pii/S0004370205000512
http://www.sciencedirect.com/science/article/pii/S0004370205000512
https://doi.org/10.1145/2016911.2016931
https://www.codecademy.com/
https://www.saros-project.org/
http://www.ucdetector.org/
https://doi.org/10.1162/jocn_a_01056
https://doi.org/10.1207/s15327051hci1102_1
https://facerig.com/
https://doi.org/10.1145/3290605.3300768
https://doi.org/10.1145/223904.223965
https://doi.org/10.1145/223904.223965
https://www.teamviewer.com/en-us/
https://www.teamviewer.com/en-us/
http://www.techsmith.com/morae.asp
https://doi.org/10.3390/su12010256
https://doi.org/10.3390/su12010256
https://doi.org/10.2466/pr0.1970.26.2.391
https://doi.org/10.2466/pr0.1970.26.2.391
https://www.learntechlib.org/p/208576
https://doi.org/10.1080/10494820.2016.1276078
https://doi.org/10.1080/10494820.2016.1276078
https://doi.org/10.1145/3290605.3300283
https://doi.org/10.1145/3290605.3300283
https://doi.org/10.1109/SeGAH.2016.7586282
https://doi.org/10.1109/SeGAH.2016.7586282
https://doi.org/10.1145/3308532.3329441
https://doi.org/10.1145/3308532.3329441
https://doi.org/10.1145/1060071.1060075
https://doi.org/10.1177/0891243287001002002
https://arxiv.org/abs/1502.05698
https://doi.org/10.1109/Agile.2008.12
https://doi.org/10.1076/csed.12.3.197.8618
https://doi.org/10.1076/csed.12.3.197.8618
https://doi.org/10.1145/332833.332848
https://doi.org/10.1145/642611.642665
https://doi.org/10.1177/0963721415599543

CHI ’21, May 8-13, 2021, Yokohama, Japan

[191

[192

[193

[194

]

]

in Computing Systems (San Jose, California, USA) (CHI '07). ACM, New York,
NY, USA, 1-10. https://doi.org/10.1145/1240624.1240626

Kimberly Michelle Ying, Lydia G. Pezzullo, Mohona Ahmed, Kassandra Cromp-
ton, Jeremiah Blanchard, and Kristy Elizabeth Boyer. 2019. In Their Own Words:
Gender Differences in Student Perceptions of Pair Programming. In Proceedings
of the 50th ACM Technical Symposium on Computer Science Education (Minneapo-
lis, MN, USA) (SIGCSE ’19). Association for Computing Machinery, New York,
NY, USA, 1053-1059. https://doi.org/10.1145/3287324.3287380

Jeff Youngquist. 2009. The Effect of Interruptions and Dyad Gender Combination
on Perceptions of Interpersonal Dominance. Communication Studies 60, 2 (2009),
147-163. https://doi.org/10.1080/10510970902834874

Hans Yuan and Yingjun Cao. 2019. Hybrid Pair Programming - A Promising Al-
ternative to Standard Pair Programming. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (Minneapolis, MN, USA) (SIGCSE
’19). Association for Computing Machinery, New York, NY, USA, 1046-1052.
https://doi.org/10.1145/3287324.3287352

Mohan Zalake, Julia Woodward, Amanpreet Kapoor, and Benjamin Lok. 2018.
Assessing the Impact of Virtual Human’s Appearance on Users’ Trust Levels.
In Proceedings of the 18th International Conference on Intelligent Virtual Agents

[195

[19

[197

[198

Kuttal, et al.

(Sydney, NSW, Australia) (IVA ’18). Association for Computing Machinery, New
York, NY, USA, 329-330. https://doi.org/10.1145/3267851.3267863

Yong Zhao. 2012. World class learners: Educating creative and entrepreneurial
students. Corwin Press, USA.

Rui Zhi, Samiha Marwan, Yihuan Dong, Nicholas Lytle, Thomas W Price, and
Tiffany Barnes. 2019. Toward Data-Driven Example Feedback for Novice Pro-
gramming. In International Educational Data Mining Society. ERIC, USA, 218-
2217.

Franz Zieris and Lutz Prechelt. 2014. On Knowledge Transfer Skill in Pair
Programming. In Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (Torino, Italy) (ESEM ’14).
Association for Computing Machinery, New York, NY, USA, Article 11, 10 pages.
https://doi.org/10.1145/2652524.2652529

Franz Zieris and Lutz Prechelt. 2020. Explaining Pair Programming Session
Dynamics from Knowledge Gaps. In Proceedings of the ACM/IEEE 42nd In-
ternational Conference on Software Engineering (Seoul, South Korea) (ICSE
°20). Association for Computing Machinery, New York, NY, USA, 421-432.
https://doi.org/10.1145/3377811.3380925

https://doi.org/10.1145/1240624.1240626
https://doi.org/10.1145/3287324.3287380
https://doi.org/10.1080/10510970902834874
https://doi.org/10.1145/3287324.3287352
https://doi.org/10.1145/3267851.3267863
https://doi.org/10.1145/2652524.2652529
https://doi.org/10.1145/3377811.3380925

	Abstract
	1 Introduction
	2 Background and Related Work on Pair Programming
	3 Human-Human Study
	3.1 Participants
	3.2 Study Design
	3.3 Data Analysis

	4 Human-Agent Study
	4.1 Wizard of Oz Study
	4.2 Agent Design
	4.3 Participants
	4.4 Study Design
	4.5 Data Analysis

	5 Limitations
	6 Results
	6.1 RQ1: Can we continue the benefits of pair programming by replacing a human programmer with an agent?
	6.2 RQ2: What kind of knowledge is transferred between human-human and human-agent pairs?
	6.3 RQ3: Do human programmers consider the agent as their partner?

	7 Trade offs of an Agent
	7.1 The Good
	7.2 The Bad
	7.3 The Ugly

	8 Conclusion
	Acknowledgments
	References

