
Towards Designing Conversational Agents for Pair
Programming: Accounting for Creativity Strategies

and Conversational Styles
Sandeep Kaur Kuttal

University of Tulsa
Tulsa, OK, United States

sandeep-kuttal@utulsa.edu

Jarow Myers
University of Tulsa

Tulsa, OK, United States
jgm5877@utulsa.edu

Sam Gurka
University of Tulsa

Tulsa, OK, United States
sag7778@utulsa.edu

David Magar
University of Tulsa

Tulsa, OK, United States
ddm2084@utulsa.edu

David Piorkowski
IBM T.J. Watson Research Center

Yorktown Heights, NY, USA
dpiorkowski@gmail.com

Rachel Bellamy
IBM T.J. Watson Research Center

Yorktown Heights, NY, USA
rachel@us.ibm.com

Abstract—Established research on pair programming reveals
benefits, including increasing communication, creativity, self-
efficacy, and promoting gender inclusivity. However, research
has reported limitations such as finding a compatible partner,
scheduling sessions between partners, and resistance to pairing.
Further, pairings can be affected by predispositions to negative
stereotypes. These problems can be addressed by replacing one
human member of the pair with a conversational agent. To
investigate the design space of such a conversational agent,
we conducted a controlled remote pair programming study.
Our analysis found various creative problem-solving strategies
and differences in conversational styles. We further analyzed
the transferable strategies from human-human collaboration
to human-agent collaboration by conducting a Wizard of Oz
study. The findings from the two studies helped us gain insights
regarding design of a programmer conversational agent. We
make recommendations for researchers and practitioners for
designing pair programming conversational agent tools.

I. INTRODUCTION

Pair programming exercises the principle that “two heads
are better than one” [1]. In pair programming, two pro-
grammers solve a problem together co-located (sitting
shoulder-to-shoulder at a computer) or remote (sharing
the computer screen and communicating remotely). One
partner acts as the driver, who actively creates code and
controls the keyboard and mouse; whereas, the other partner
is the navigator, who constantly reviews the driver’s work,
proposes suggestions, and asks clarifying questions [2]–[4].
There is a long history of established research on pair
programming’s benefits such as increased communication,
creativity, knowledge management, and self-efficacy [2]–[14].
Pair programming reduces the gender gap as it encourages
women to pursue computer science [15] and increases
their Information Technology fluency, which includes their

contemporary skills, fundamental grasp of concepts, and
intellectual capabilities [10], [14]–[17].

However, researchers have also reported limitations with
pair programming, such as scheduling difficulties and
collocating pairs [18], student resistance to pairing [19],
[20], and dependencies on peers’ programming abilities [21].
Further, establishing a synergistic collaboration between
pairs can be challenging as they might be affected by their
relational interactions [22], [23] or may be predisposed to
negative stereotypes [24].

One way to address these problems is by replacing
one human member of the pair with a conversational
agent to promote the human’s coding practices and avoid
stereotyped views. Further, current technologies are enabling
more natural forms of human-machine interaction and
potentially even dissolving the boundaries between human-
human and human-machine interactions through the use of
Conversational Agents (CAs) and Artificial Intelligence (AI)
[25], [26]. We wanted to investigate how we can further
dissolve these boundaries, especially in a programming
context.

To investigate the design space of a pair programming
CA, we conducted a remote pair programming study with
18 participants. Our goal with this study was to understand
how humans behave in a programming context to reveal
possible design guidelines for an agent. Based on research
from Wagner [27], Zhao [28], and Edelman [29], teaching
students to collaborate, communicate, and think critically
and creatively is central for student success and aligns with
their innate desire.

• RQ1: What creativity strategies are used by pair pro-
grammers?

• RQ2: What communication styles are used during pair
programming?

Identifying which strategies and styles, if any, transfer
matters because research suggests that human-agent and978-1-7281-6901-9/20/$31.00 ©2020 IEEE

TABLE I
THE FOUR PHASES OF CPS AND THEIR DEFINITIONS, ALONG WITH EXAMPLES OF PARTICIPANTS IMPLEMENTING TIC-TAC-TOE.

Phases Definitions Examples (from our study)
Clarify: Explore the Vision Identify the goal, wish, or challenge. “You need to implement the game features, such as checking if we

have a winner”
Clarify: Gather Data Describe and generate data to enable a clear

understanding of the challenge.
“So I guess that’s testing if someone put down a mark on the tile
[referring to a test case in the code].”

Clarify: Formulate Chal-
lenges

Sharpen awareness of the challenge and create
questions that invite solutions.

“We want to check if there are three vertical, horizontal, diagonal
for the same mark.”

Idea Generate ideas on how to solve the challenge “It’s a three-by-three, so we could go from a loop for rows and then
a loop for columns and then a loop that’s testing diagonal.”

Develop To move from ideas to solutions. Evaluate,
strengthen, and select solutions for best “fit.”

“We would want to have a section of code that qualifies for checking
the rows, and another for checking the columns. Just to structure the
code and organize it.”

Implement Explore acceptance and identify re-
sources/actions that support implementation of
the selected solution(s).

“Change that, the board to x again. And then if we test that, vertical
and horizontal come back as true. [implementing code that gives
the desired result]”

human-human interactions differ in many aspects and that
mechanically applying existing theories of human-human
interaction to the design of human-agent collaboration is
ill-advised [30]–[32]. Thus, to investigate which creativity
strategies and communication styles transfer to CA design,
we conducted a follow-up Wizard of Oz study. By examining
the set of transferable strategies and the set of non-
transferable ones, we aim to identify general mechanisms
that mediate how people sense, comprehend, and interact
with artificial agents.

• RQ3: Which creativity strategies and communication
styles transfer from human-human interactions to
human-agent interactions?

II. BACKGROUND

A. Osborn-Parnes Creative Problem Solving

We leveraged the Osborn-Parnes Creative Problem Solving
(CPS) Process [33]–[36] to identify different creativity strate-
gies that pairs and individuals engage in. Table I shows the
four phases of the CPS process. CPS is flexible, and its use
depends on the situation. For example, if one already has a
clearly defined problem, the process would begin at the idea
phase. CPS has been used in computer science education to
teach programming [37], [38]. Hence, CPS process is ideal
to support a structured problem solving by a CA.

1) Pair-Programming Studies and Creativity: A pair’s
creativity increases with pair programming as Tanja et al.
suggested that the solutions of the pairs should be better
than those of individuals because the combined creativity
and experience of both are greater [39]. Seo et al. found that
software education using pair programming will be more
effective on the development of elementary school students’
creativity [40]. Begel and Nagappan noted creativity to be
one of the top ten benefits of pair programming as reported
by engineers from the industry [41]. Howard et al. found
that students enjoyed programming and experienced more
creativity in pairs than working solo [42]. None of these
studies have done qualitative investigations of the creative
problem solving process of programming pairs.

B. Communication - Dialogue Acts

In order to understand the pair of programmers’ com-
munication we used Dialogue Acts (DAs) which Andreas
et al. defined DAs as “classified utterances according to a
combination of pragmatic, semantic, and syntactic criteria”
[43] (Table II). DAs are useful not only because they enable
understanding of conversational speech and collaborative
problem solving [17], [43], [44] but also enable understand-
ing of conversations via a hidden Markov model (an AI
algorithm) [43], a necessity for a CA.

1) Pair-Programming Studies and Communication: Da
Silva et al.’s literature review on pair programming raised
concerns about the inadequate number of studies related
to remote pair programming and advocated for more
studies on communication [45]. Thus we leveraged DAs to
understand the verbal communication of pair programmers.
The only study that investigated DAs in the context of pair
programming is by Rodríguez et al. [17] which found that
collaboration among undergraduate CS students is more
effective when both partners make substantive dialogue
contributions, express uncertainty, and resolve it. Our study
differs as we investigate more DAs, use a remote pair
programming setting, and focus on creating a CA.

C. Conversational Agents

Conversational Agents (CAs) are computer systems that
are designed to interact with a human user through natural
forms of conversations across a wide variety of domains.
In education, Sklar and Richards [46] have categorized
three agents to assist human learners: pedagogical agents,
peer-learning agents, and demonstrative agents [47]–[52].
Educational conversational agents can teach or be taught
by students, and serve as a learner companion to avoid
the “isolation problem” of computer education. Here, we
investigate the design space for CAs that can act as a peer
instead of tutor or tutee.

In the software engineering domain, Wood et al. con-
ducted a Wizard of Oz study and explored AI techniques
to detect speech types in programmers questions/answers
while repairing bugs [53]. We differ as we investigate pair
programming, creativity strategies and communication styles,

TABLE II
THE DIALOGUE ACTS AND THEIR DEFINITIONS, ALONG WITH EXAMPLES OF PARTICIPANTS IMPLEMENTING A TIC-TAC-TOE GAME.

Dialogue Acts Definitions Examples (from our study)
Statement A single declaration or remark. “I see there’s already an x player.”
Acknowledgement Acceptance of the existence of something “Okay.”
Agreement Direct accordance in opinion “Yeah, sure.”
Indirect Instruction Implicit or polite instruction “We just need to make a diagonal.”
YN Questions (QYN) Questions asking for a yes/no answer “Did I close something?”
YN Answers (AYN) Yes/No answers “Yes.”
WH Question (QWH) Question asking for

who/what/when/where/why/how
“What do I call this?”

WH Answers (AWH) Answering WH questions “That should be at the bottom.”
Direct Instruction An Explicit instruction “Okay, and then go up to the top, and change that, the board to x

again.”
Uncertainty Dialogue that indicates uncertainty “That says if. Umm lets see. What is it called.”
Feedback A response or comment expressing opinion/feeling “That’s probably gonna be a better idea.”, “That’s too complicated.”
Apology A regretful acknowledgment of failure “Oh sorry. Oh my gosh. I’m so sorry.”

and explore the transferable human-human aspects to a
human-agent pair.

III. METHODOLOGY

To understand the human-human interactions in a pair
programming context, we conducted a controlled lab study.

A. Participants

We selected 18 university students (9 men and 9 women)
on a first-come, first-served basis while ensuring an equal
gender1 distribution. This was to avoid gender biases not
only in the observational study, but also in our recommenda-
tions for CAs. Given recent findings over bias in AI tools, it is
imperative to use gender-balanced data in machine learning
to prevent the continuation of ideologies that disadvantage
women [56]. All participants had basic object-oriented
programming experience. The education level distribution
of participants was 3 freshmen, 1 sophomore, 5 juniors, 7
seniors, and 2 masters students. We had 17 participants in
the age range of 19-23 years and one in 30-40 years. Nine
participants had two years of programming experience, 5
had three years experience, 3 had four years experience,
and 1 greater than four years. Only six participants reported
prior experience in pair programming. All participants
were compensated with a $20 gift card for participating.
Throughout the paper we refer to pairs with label PS# for
same-gender and PX# for mixed-gender (i.e. PS4 denotes
Pair 4, a same-gender pair). Participants are referred to with
the following labels: PS2-M1 denotes M for man, 1 for 1st
partner, in Pair 2. Likewise, PX3-W2 denotes in Mixed-gender
(X) Pair 3, W for woman, 2 for 2nd partner in the pair.

B. Study Design

Since prior research has shown that there are differences
between how same-gender and mixed-gender pairs col-
laborate, communicate and coordinate [57], 3 man-man,
3 woman-woman, and 3 man-woman pairs were formu-
lated. To emulate a remote pair programming environment,

1We will only focus on the two most common genders: “women” and
“men.” As with [54], [55], gender is a person’s gender identification. We
use the term “men” as a shorthand for “people who identify as men” and
“women” to denote “people who identify as women.”

participants were placed in separate rooms during the
study. Compared to co-located pair programming, remote
pair programming is known to be comparable for student
performance, effective code quality, and productivity [58]–
[60]. Furthermore, since we were interested in designing a
CA, we decided the remote programming setup of sharing
a computer screen and remotely communicating through
the computer more closely mimics interactions with a CA.

Participants used Eclipse IDE [61] for programming in
Java and TeamViewer [62] for remote collaboration. The
participants communicated using text, voice, and video chats
provided by TeamViewer.

At the start of the study, participants were asked to fill out
a background questionnaire. They were also given a tutorial
about pair programming and the think-aloud method [63].
All participants used the think-aloud method to vocalize
their thoughts as they worked on their programming tasks.
After being introduced to these concepts, participants were
given a simple pair programming task to fix a validation test
in a password checking implementation with the purpose
of encouraging pair jelling. Pair jelling is a period of time
when pairs first work together and become acquainted with
the pairing, after which they perform considerably more
efficiently [64], [65]. During the pair programming tasks,
participants freely switched roles as necessary.

After the simple task, participants were given the main
task which was to implement a Tic-Tac-Toe game within a
40 minute time period. The time limit served to ensure the
entire session was below 90 minutes as well as to prevent
participants from fatiguing. Facial reactions, audio, and
screen interactions of participants were recorded through
Morae [66], a screen capture tool. In the Tic-Tac-Toe game,
the players take turns marking spaces in a 3x3 board.
Participants had to add code and test cases to complete
the task. Participants were provided with user stories and
scenarios of the game, along with the implementation of the
board and three related test cases. Tic-Tac-Toe was selected
for its simplicity, as anyone with basic Java experience could
understand and implement solutions for the requirements,
without prior knowledge of the domain.

C. Analysis of Data

Video and audio of the participants were transcribed and
qualitatively coded according to the stages of creativity (refer
Table I) and communication Dialogue Acts (refer Table II)
code sets. Codes were assigned to the 30-seconds segment
split of the task, allowing multiple codes per segment. Three
researchers independently coded 20% of the transcripts
and reached an agreement on 90% of the coded data by
calculating inter-rater reliability using the Jaccard measure
[67]. Then the researchers split the remaining transcript data
and coded it independently. The researchers used thematic
analysis [68] to organize qualitative data into themes which
relate back to the research questions.

IV. RESULTS

Here, we answer our RQs and propose Design Guidelines
(referred to as G#) for future CAs to serve as pair pro-
gramming partners (refer Table III). The design guidelines
followed a consistent format as recommended by Amershi
et al. [69]. We used deductive and inductive reasoning to
develop guidelines. Example: For G1, based on our results
we deducted that participants verified after every stage of
creativity and then using inductive reasoning formed G1.

A. RQ1: Pair Programming Creative Strategies

In order to answer RQ1, we leveraged the Osborn-
Parnes Creative Problem Solving (CPS) to understand our
participants (as discussed in Table I). Note, that our partici-
pants were not explicitly asked to follow the CPS process.
Participants evenly fell across the four CPS phases (Clarify
25.6%; Idea 24.0%; Develop 22.7%; Implement 27.7%). We
also observed that participants did not stay in one phase
for extended periods of time as they completed tasks. Thus,
no phase took significantly more time than another.
Overall Strategies as a Pair
Verifying after each creativity phase → G1 Pairs followed
the CPS process with additional verification at the end of
each phase. The modified model is shown in Figure 1. The
pairs moved to the next phase of the creative process if
they got positive responses from their partner, artifacts,
or environment and in the case of a negative response,
they backtracked to previous phases. For example, during
the implement phase, some pairs would backtrack to the
develop phase in order to rethink their logic and form a
more effective solution. In PS2, PS2-M1 verified with his
partner PS2-M2, “our test passes on that, correct?” which
prompted PS2-M2 to run the test and realize “the false one
is not right”. The pair then backtracked in their solution
to fix the errors they discovered. We found that 5 pairs
backtracked after verification.
Understand and elaborate ideas → G2 Eight out of our 18
participants employed visualization techniques to organize
their thinking as well as to communicate thoughts and ideas
about the program with each other. For instance, participant
PS1-M2 commented, “I’m going to write down an array on
my sheet of paper... So we got something like this [shows the

Fig. 1. Modified Creative Problem Solving process followed by pair
programmers in our study. After each phase, participants verified with their
partner, artifacts, or environment to move forward or backtrack within the
process. The percentage of time spent in each phase by participants is
shown with each phase label.

paper with drawing through camera]” and used his drawing
to explain his thoughts to his partner.

In addition to visualization, participants used a variety
of strategies to organize and convey ideas. These included
questions and clarifications (2), body language (2), and
writing abstract code (1). For example, PS4-W1 asked,
“Should we do three functions for winner?” By doing this,
the participant was able to share and improve the idea
based on her partner’s response. Another participant, PS5-
W1, employed body language to help show her ideas, stating
“they are on horizontal or one vertical or one diagonal” while
using hand gestures to convey her thoughts.
Participants used both breadth and depth-first approaches
→ G3 In breadth-first approach the participants formulated
many ideas, and then discarded unnecessary ones. Seven
out of 18 participants in our study used a breadth-first
approach. For example, while considering what test cases
were necessary, PX6-W2 stated, “Let’s go ahead and get rid
of placeAnOMarkTest (a test case), we can always re-write
it if we need to.” Shortly thereafter, the participant decided
this case was not needed and deleted it.

In contrast, in depth-first approaches, participants for-
mulated an idea and looked more deeply into it instead
of considering alternatives. Seven out of 18 participants
used a depth-first approach. PS9 exhibited a depth-first
approach as the pair did not consider a different solution
until one was fully fleshed out and implemented, as PS9-M1
commented, “the other way to do it is...” as he began to
present an alternate solution, but eventually decided “that’s
too complex” and kept the already-made solution.
Thinking generally before tackling specifics to allow for
organized problem-solving → G4 Five out of nine pairs
utilized this strategy. PS2-M2 commented, "We’ll have to
make two hypothetical games, or maybe a lot... We’ll make
a board object, fill it to some degree, and then check if the
game is over.” He left the board state abstract, allowing the
pair to plan what they needed to do when checking all

TABLE III
PROPOSED DESIGN GUIDELINES. GUIDELINES G1-G4 ARE FOR CREATIVITY AND G5-G12 FOR COMMUNICATION.

G# Proposition
G1 Support verification after every phase of creativity. Ask for verification as a driver after completing the phase, and as a navigator, verify a human

partner’s verification requests.
G2 Support ideas visually and verbally. As a driver, the agent should be able to understand a human’s ideas and as a navigator communicate the

ideas.
G3 Support breadth-first and depth-first idea generation. The agent should be able to implement both idea generation approaches as a driver and

understand them as a navigator.
G4 Support problem solving via abstract thinking and specific tasks. As a driver, the agent should be able to use both techniques and as a navigator

should be able to recognize when the human uses them.
G5 Clearly acknowledge suggestions. The agent should acknowledge a human’s suggestions as a driver and identify tasks or methods as a navigator.
G6 Show clear agreement when a human partner is correct. As a driver, the agent should positively acknowledge directions given by the human. As

a navigator, if the human’s ideas or implementations are correct, the agent should acknowledge them positively.
G7 Give indirect instructions politely. Give direct instruction as a backseat driver. The agent in driver/navigator role should provide polite indirect

instructions. The agent should act as a backseat driver (on human’s request) and give direct instructions.
G8 The WH question’s answers should be accompanied by directions and suggestions. If the agent can not verify human’s decisions it should

politely ask WH questions to try and understand.
G9 Clearly explain the reason for yes/no decisions. The agent should answer in yes/no format and give an accompanying explanation for the reason

why the answer is yes/no.
G10 Give feedback related to the correctness and the completion of code with a positive tone.
G11 Express uncertainty with verbal and non-verbal cues. As a driver, the agent can use filler words and embodiment or avatars to express uncertainty,

and in the navigator role, the agent should be able to detect uncertainty, reassure and redirect humans to a correct solution.
G12 Show apology when the answer is unknown or a mistake is made. As a driver, the agent should apologize if it does not know the answer or

made a mistake, while as a navigator, it should use empathizing dialogue when the human apologizes.

the ways to win across multiple cases. PS4-W2 commented,
“How about if we test true and false? ... so we are checking if
there are three marks,” when considering the general way to
check for a win. By considering the general case instead of
a specific instance, the participant created a plan to tackle
the task.

In contrast to thinking generally, three pairs were observed
to consider specific cases as a starting point. Focusing on a
specific case allowed a pair to understand it well and then
extend its ideas to other cases. An example is in PX6; the
pair tried to implement a test that checks if the Tic-Tac-Toe
game has a vertical win, as participant PX6-M1 commented,
“Let’s say it’s in the top left corner, and then the left most
column is the winning one, let’s say that’s the case.” The
participant picked a specific game situation that resulted in
a win, the left column having three in a row, and used it
to understand how the vertical win method should work.
Focusing in on this specific case made the problem less
abstract, potentially making it easier to see a solution.

B. RQ2: Pair Programming Communication Styles

In order to answer RQ2, we used Dialogue Acts (DAs) to
understand the verbal communication between the pair of
programmers (as discussed in Table II). Table IV shows the
comprehensive list of DAs with their frequencies.
Conversational Style: Major Dialogue Acts used by Pairs

Statements were used most often, but they are less
interesting, because they are the simplest DA and were used
by participants for "descriptive, narrative, and personal" use,
similar to findings of [43]. Other major DAs used were:
Acknowledgement → G5 Acknowledgement was used by all
18 participants as a short response to the identification of
a new task or method of implementation typically via short
responses such as “yeah,” “uh-huh,” “alright,” and “okay”.
Agreement → G6 All 18 participants used agreement as a
verbal positive response to a question such as checking

TABLE IV
THE DIALOGUE ACT TAGS MOST PROMINENTLY FOUND IN OUR STUDY. DA
FREQUENCIES ARE GIVEN AS USED BY MEN (# OF MEN PARTICIPANTS THAT

USED THE DA), WOMEN(# OF WOMEN PARTICIPANTS THAT USED THE DA), THE

TOTAL AMOUNT, AND THEIR PERCENTAGES OF THE TOTAL NUMBER OF

UTTERANCES IN THE OVERALL CORPUS.

Dialogue Acts M(#) W(#) Total %age
Statement 766(9) 733(9) 1499 40.56%

Acknowledgement 223(9) 129(9) 352 9.52%
Agreement 119(9) 124(9) 243 6.57%

Indirect Instruction 118(9) 65(9) 183 4.95%
YN Question 84(9) 89(9) 173 4.68%

Feedback 88(9) 69(8) 157 4.25%
Direct Instruction 72(9) 69(9) 141 3.81%

Uncertainty 65(8) 71(9) 136 3.68%
YN Answer 49(9) 84(9) 133 3.60%

WH Question 45(9) 61(9) 106 2.87%
WH Answer 27(8) 21(8) 48 1.30%

Apology 8(6) 20(9) 28 0.76%

the validity of code, or a new idea such as how to
implement a task. Agreements were elaborated upon more
than acknowledgements when responding, such as how
PX6-W2 said “I think we should do that,” when her partner
proposed a new task.
Indirect and direct instructions → G7 Indirect instruction
was a polite or suggestive way of providing directions.
All participants used them for taking and giving control,
identifying tasks, running tests, suggestions, agreeing to
tasks, reusing code, and giving an abstract view of the task
or implementation. Directed instruction was used for similar
reasons, but with directions given explicitly. For example,
PX6-W2 told her partner “Go up to the top, and change
that— the board to x again.”
Asking and Answering WH questions → G8 All 18 partici-
pants used WH questions and only 16 responded with WH
answers. WH questions were asked regarding topics such
as implementation, deciding the next task, and deciding
navigator/driver roles. We observed participants giving
explanations or directions when asked WH questions.

Answering Yes/No questions → G9 All 18 participants asked
and responded to yes/no questions. Yes/no questions were
used for simpler topics such as the verification of ideas and
code. Elaborations were also offered for example PS2-M1
asked “So do we want the board to be full in that case?” to
which PS2-M2 answered “It doesn’t really matter. it should
be a test for multiple case where there’s no winner. So you
can have a lot of different cases, you know.”
Feedback → G10 Seventeen participants used positive
feedback for reasons such as correctness, affirmation, and
completion. They also gave feedback when removing things
such as “I don’t think we need it. Remove it.” as said by
PS5-W2 in reference to a line of code.
Uncertainty → G11 Seventeen participants showed uncer-
tainty when they made suggestions, responded to queries,
decided navigator/driver roles, and determined the next
task. When navigating, a participant’s uncertainty was
often verbalized with filler words like “uhm” and “yeah”
or non-verbal ones such as laughter. For example PS2-
M2 commented “yeah, so. For the diagonal, we can just
uhm.” When participants found themselves uncertain of
what to do next, their partner would step in the driver
role to assist. For example PS5-W1 commented, “Uhm. I’m
always confused with the for-loop. (PS5-W1 laughs).” PS5-W2
then switched roles by saying “Yes. Let me try something.”
Hence, participants used non-verbal communication such
as laughing and verbal communication with filler words to
show uncertainty as known in communication theory [70].
Apology → G12 Fifteen participants, apologized when they
were incorrect. For example PS5-W2 commented [referring
to an array index], “From three.” and was corrected by PS5-
W1 who said, “From two.”. PS5-W2 then apologized “Yeah.
Sorry.” Apology was sometimes accompanied by nonverbal
communication such as hand gestures and laughter.

C. RQ3: Transferable Creativity Strategies and Communica-
tion Styles

To answer RQ3, we conducted a preliminary Wizard of Oz
lab study to 1) investigate strategies transferable from human
partnerships to agent partnerships and 2) identify effective
strategies for agent design that deepen our understanding of
the differences between human-human and human-agent
interaction in a pair programming context.

The design of the study looked beyond current technology
in which humans expect the agent to be of poor quality, and
instead considered what such an interaction may require
if the agent was as closely skilled to that of a human. This
was the motivation for the wizard of oz design.

1) Preliminary Wizard of Oz study: A Wizard of Oz study
is a rapid-prototyping method that examines interfaces that
are either very technically demanding or are yet to be created
[71]–[73]. Such studies help develop user-friendly interfaces
that promote natural language dialogue and consider the
unique qualities of man-machine interaction as distinct
from general human discourse [74], such as studying user
interactions with CAs [75]–[77].

Figure 2 is the snapshot of what our participants saw
on their screen. The “agent” was implemented with a chat
window using Saros plugin for Eclipse IDE [61], avatar using
FACSvatar [78] and text-to-voice conversation using gTTS
[79]. Participants had the option to change the arrangement
of the programming and video chat windows, but none of the
participants rearranged the windows. The wizard acting as
an agent replaced text recognition and intent understanding,
and used a protocol to implement the study. For example,
when P1 said “How to write code for win” the intent for this
was writing code, and the agent used the wizard protocol
(detailed [80]) to respond “I can make a recommendation
from online, would you like me to do so?” We used a
constrained Wizard of Oz protocol [81] with a small set
of available intents, so that the agent would exhibit a
realistic level of intelligence to study programmer responses.
If participants asked questions beyond the protocol, the
wizard answered “I’m afraid logic isn’t my strong suit” to
simulate the behavior of a potentially automated system.

Fig. 2. Snapshot from Wizard of Oz study. The participants viewed facial
expressions of agent (wizard) in the form of an avatar and interacted with
it through a chat window and voice.

Participants: The human-agent study was conducted with
seven university students (3 undergraduate, 3 graduate). We
analyzed the data of 6 students (5 men and 1 woman) as one
did not use the agent. Ages varied (3 were 19-23 years; 2 were
24-29 years; 1 was 30-40 years). Programming experience also
varied (3 had less than a year of programming experience;
3 had more than four years of experience). None of the
participants had prior pair programming experience. We
compensated participants with a $20 gift card. Pairs are
referred to as PB# (i.e. PB3 is pair 3) with human participants
labeled as PB#-P1 and the agent as PB#-B1.

Study Design: The human-agent study was conducted
with the same structure as the human-human study (tutorial
and main task), with the exception of the pair-jelling simple
task, as pairs had only one human participant. We also
interviewed participants to get feedback about the agent
design. Analysis used similar code sets as in the prior study.

Results: We investigated the transferability of design
guidelines related to creativity strategies and communication

TABLE V
TRANSFERABILITY OF CREATIVITY (G1-G4) AND COMMUNICATION (G5-G12) GUIDELINES FROM HUMAN-HUMAN TO HUMAN-AGENT PAIR PROGRAMMING. THE

PEACH COLORED ROWS SHOWS HARD TO TRANSFER GUIDELINES.

Design
Guidelines

Remarks

G1 Verify All 6 participants verified with the agent or another source. PB5- P1 took time to verify if code worked and commented, “Okay, where is
this going?” The agent should detect each phase of creativity and use verification after each one, such as asking if the human partner is
satisfied with the results e.g. ideas, code, tests.

G2 Visualiza-
tion

Some participants preferred using visualization to organize thoughts. For example, PB2-P1 commented, “what I need now is a pen and a
paper. That is what usually I do.” The agent must be able to support this by using sketch-based whiteboard apps (such as [82]–[84]),
though it will be difficult to have the agent generate ideas.

G3a Breadth-
First

The participants in human-agent study did not use breadth-first approach when working with an agent. With current technology an agent
won’t be able to generate its own ideas but should be able to recognize it in a partner and can facilitate divergent thinking for partner.
Graphics and interface design tools support divergent thinking by creating multiple options for users and supporting them to manipulate
and compare those options [85]–[89].

G3b Depth-
First

All participants opted to stick with their ideas and use a depth-first approach. The agent should be able to recognize when a human
partner tries to use the depth-first approach. It should also be able to use the approach when ideas are being generated, though generating
ideas itself may not be viable.

G4a Abstract
Solutions

Participants did not opt to use abstract thinking with the agent, as help from it was more concrete. Designing the agent to think with
abstraction will be difficult and unlikely to accomplish. However, recognizing when the human partner is trying to use abstraction could
be viable.

G4b Specific
Solutions

The agent should be able to consider specific cases when the human partner is attempting to use them to bolster understanding. For
example, PB4-P1 commented, “So now I’m going to be typing, um, so it would be three marks in a vertical column.”. Here agent can detect
intent of the task.

G5 Acknowl-
edgement

Our participants said in interviews that they like when the agent acknowledged and encouraged them. For example, PB5-P1 commented “I
liked the encouragement, that was cute.” Acknowledgement would be simple to implement when responding to ideas and suggestions, but
testing the correctness of the ideas would be difficult.

G6
Agreement

CAs would have to be able to verify the correctness of any statement given by the human in order to agree, so unless the idea is closely
related to auto-generated code or test cases it will be very hard to implement.

G7a Indirect
Instr.

It is hard for a CA to auto-generate indirect instructions for a human conversation.

G7b Direct
Instr.

When an agent can apply auto-generated code and test cases, it can act as a backseat driver. It will also be able to tell its human partner
what should be done next. For example in PB7, PB7-B1 said “we need to write a method to check for a horizontal win.”

G8 WH
Question

Dialogue generation may be challenging for WH questions, especially if not related to auto-generated code or test cases. Ko et al. shows
this is possible to an extent, as Whyline implements WH questions [90], [91].

G9 YN Ques-
tion

For questions related to auto-generated code and test cases, it will be possible. For example PB1-B1 asked “Is this code example from
online useful?” Questions regarding idea verification will be difficult however.

G10
Feedback

All 6 participants in our study appreciated the feedback given by the agent. For example, PB4-P1 commented, “the partner feedback was
pretty good.” An agent can give feedback for correct tests and code.

G11 Uncer-
tainty

In presence of an agent participants had more uncertainty, for example, PB4-B1 commented “we will need to place marks at zero two,
one one, and two zero.” to which M1 replied “ah, I didn’t do, wait I didn’t do all the unit tests. Ah, I feel like an idiot.” The agent should
provide explanations to combat uncertainty.

G12 Apology Participants in our study expected agent to apologize when it made mistakes or did not know the answer. For example, in an interview
PB2-P1 commented “if he apologized my trust would come back,” after the agent gave flawed code. It should also be able to recognize
apologies and respond reassuringly.

styles from a human-human to human-agent context.

Transferable Creativity Strategies. Table V contains de-
sign guidelines (G1-G4) discussed in RQ1 and how they
can be transferred into a CA. Creativity strategies that
require generating unique ideas, such as breadth-first idea
generation and use of abstract thinking, are harder to transfer
so cannot be fully realized by an agent. Instead, the agent
will function as a synergistic partner supporting a human
partner’s ability to do these things.

Transferable Communication Styles. Table V shows the
transferable design guidelines (G5 to G12) from human-
human study to human-agent. Some of the designs are
harder to transfer to a CA because humans are good at
solutions, ideas, and designs relative to computers. It is
possible to automatically generate source code and test
cases as well as classify intent based on DAs to an extent.
Hence, designs relying on these factors can be implemented
by a CA in a driver/navigator role.

The dialogue templates for CAs should be designed
to engage programmers by providing non-authoritative
suggestions [92] and motivate the partner following Neilsen’s

Heuristic [93]. All 6 participants indicated in their interview
that they liked and preferred the agent motivating them
and verifying their implementations. For instance, PB5-P1
commented “I like the response... when I was correct and
where I was wrong”.

Interruptions by partner. Interrupting the human partner
only when necessary and relevant to the current topic
can be a transferable aspect. In the human-human study,
participants said they did not want to interrupt their partner
as they considered it to be impolite, had low confidence, or
did not want to be distracting. In the human-agent study,
we found that humans interrupted the agent when they
did not know what to do next, were stuck, were unsure
about their problems, or wanted clarification. The agent
would interrupt whenever it had a suggestion, occasionally
frustrating the participant leading them to mute or ignore
the suggestions. Similar to human-robot collaboration [94],
programmers ignored an incorrect problem-solving strategy
given by an agent. This may suggest an agent should not
interrupt a human until there is a high error probability
and that, for minor issues, it should wait until the human

has finished the current task.

V. LIMITATIONS

One limitation of this study is the small sample size
of 9 pairs in the human-human study and 6 pairs in
the human-agent study. Further, the human-agent study
did not have a gender balance, although the transfer of
strategies was independent of gender as the guidelines were
gender-inclusive. Additionally, being a think-aloud study,
DAs may not reflect real life communication scenarios.
Consequently, Table IV may not accurately represent the
true communication between the human participants, but
it may indicate a trend for how dialogue acts are used. Our
study also chose the intents for the CA trying to mimic
what may be considered reasonable given the current state
of research. However, AI is growing and it is difficult to
guess the where technology will be when such an agent
is created. Similarly, the level of integration between the
agent and the code determines what functionality an agent
can provide as a partner and likewise had to be estimated
for RQ3. An actual agent may have more or less features
available depending on its integration with the codebase.

VI. DISCUSSION

To create a CA for pair programming, we need to parse
the intent of utterances automatically for creativity phases
or DAs. Such research has many challenges since the
dialogue between programmers differs greatly from everyday
conversations. Further, most research in natural language
processing is focused on the physical world where topics are
more discrete and universally established, while software
artifacts are not and vary by their use.

Fig. 3. Shows the human-human and human-agent interactions. (Left
dotted black arrows) shows how humans skipped idea and develop phase
when provided with answers (code/test cases) from an agent. (Right black
arrows) shows humans pairs creatively programming.

In our human-agent study, we discovered potential issues
with our primitive design for a CA and how it affected
the CPS process. In the human-human study, participants
thoroughly followed the creativity process, but in the
presence of an agent, human-agent participants skipped over
idea generation and jumped straight to implementing code
(refer to Figure 3) as they got code and test case templates
from the agent. This was evident as the code frequencies
in the idea phase dropped from 24% to 14.2%; additionally,
the implement phase code frequencies increased by 7.5%.
Our results suggest that working with the agent caused
participants to spend less time in idea generation and thus

their creative output was lower. We recommend designers
and practitioners be cautious when designing CAs to support
programming, especially while handling the creative process,
as to not hinder idea generation.

A. Implications for Pair Programming CA

In addition to the design guidelines discussed in the
results section, and for Human-AI interactions [69], we
recommend the following for a pair programming CA:

1) Including the Social Intelligence: CA for pair program-
ming needs to exhibit social intelligence through effective
floor management (turn-taking) by supporting features
such as actively listening and sensing to determine who
is talking and when to interject, detecting user confusion,
sensing disengagement, etc. Further, by continuously “being
there” and making rapport with the programmer, an agent
may create “social influence” which has positive effects
on persuasion and trust. In our human-agent study, four
participants mentioned that they liked the social aspect
"being there" of the agent.

2) Including Embodiments: CAs may include the op-
tional feature of face and voice. Embodiments are known
to improve trustworthiness, interaction engagement, user
perception, and task performance [75], [95]–[97], especially
for tasks that require continuous engagement like pair
programming. An embodiment may offer unique benefits,
such as during an interview, when PB4-P1, who had a
hearing disability, expressed appreciation for the avatar and
mentioned as he could supplement his hearing with lip
reading. Yet, empirical evidence is mixed about the necessity
of the embodiment [98]–[103], thus we propose offering
users an option to disable it.

3) Including Trustable Traits: Irrespective of gender, trust
is built between human partners over time with an open-
minded, polite, confident and knowledgeable partner [57].
Based on existing literature, humans trust agents easily [104].
Further, in our human-agent study, participants trusted the
agent without question. In one case, PB7-P1 responded,
“I’m going to blindly believe you.” Thus, an agent should
be designed to be confident, transparent in its decisions,
and to show its vulnerabilities (limitations as a machine) to
increase the trust with a human partner over time.

VII. CONCLUSION

This is the first research to consider the design space for a
pair programming conversational agent. Our in-depth quali-
tative analysis revealed human-human pair programmer’s
creativity strategies and communication styles resulting in
12 design guidelines for designing a conversational agent.
Further, our human-agent wizard of oz study identified
which of these are transferable to an agent. Such differences
are not only important from a design perspective but also
are critical for programmers who develop conversational
agent technologies. With this foundational work, we take the
first steps in making a conversational agent pair programmer
one step closer to reality.

REFERENCES

[1] A. Woolley, I. Aggarwal, T. Malone, Collective intelligence and group
performance, Current Directions in Psychological Science 24 (2015)
420–424. doi:10.1177/0963721415599543.

[2] D. W. Palmieri, Knowledge management through pair programming,
2002.

[3] L. Williams, C. McDowell, N. Nagappan, J. Fernald, L. Werner,
Building pair programming knowledge through a family of experi-
ments, in: 2003 International Symposium on Empirical Software
Engineering, 2003. ISESE 2003. Proceedings., 2003, pp. 143–152.
doi:10.1109/ISESE.2003.1237973.

[4] L. Williams, R. Kessler, Pair Programming Illuminated, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[5] C. Barra, B. Crawford, Fostering creativity thinking in agile soft-
ware development, Vol. 4799, 2007, pp. 415–426. doi:10.1007/
978-3-540-76805-0_37.

[6] A. Belshee, Promiscuous pairing and beginner’s mind: Embrace
inexperience, 2005, pp. 125 – 131. doi:10.1109/ADC.2005.37.

[7] A. Cockburn, L. Williams, Extreme programming examined, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001, Ch.
The Costs and Benefits of Pair Programming, pp. 223–243.
URL http://dl.acm.org/citation.cfm?id=377517.377531

[8] T. DeMarco, T. Lister, Peopleware: Productive Projects and Teams,
Dorset House Publishing Co., Inc., New York, NY, USA, 1987.

[9] F. Zieris, L. Prechelt, On knowledge transfer skill in pair programming,
in: Proceedings of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM ’14, ACM,
New York, NY, USA, 2014, pp. 11:1–11:10. doi:10.1145/2652524.
2652529.
URL http://doi.acm.org/10.1145/2652524.2652529

[10] C. McDowell, L. Werner, H. Bullock, J. Fernald, The effects of pair-
programming on performance in an introductory programming
course, in: Proceedings of the 33rd SIGCSE Technical Symposium
on Computer Science Education, SIGCSE ’02, ACM, New York, NY,
USA, 2002, pp. 38–42. doi:10.1145/563340.563353.
URL http://doi.acm.org/10.1145/563340.563353

[11] N. Katira, L. Williams, L. Williams, E. Wiebe, C. Miller, S. Balik,
E. Gehringer, On understanding compatibility of student pair pro-
grammers, SIGCSE Bull. 36 (1) (2004) 7–11. doi:10.1145/1028174.
971307.
URL http://doi.acm.org/10.1145/1028174.971307

[12] C. McDowell, L. Werner, H. E. Bullock, J. Fernald, The impact of pair
programming on student performance, perception and persistence,
in: Proceedings of the 25th International Conference on Software
Engineering, ICSE ’03, IEEE Computer Society, Washington, DC, USA,
2003, pp. 602–607.
URL http://dl.acm.org/citation.cfm?id=776816.776899

[13] L. A. Williams, E. N. Wiebe, K. Yang, M. Ferzli, C. Miller, In support
of pair programming in the introductory computer science course,
Computer Science Education 12 (2002) 197–212.

[14] O. Ruvalcaba, L. Werner, J. Denner, Observations of pair program-
ming: Variations in collaboration across demographic groups, in:
Proceedings of the 47th ACM Technical Symposium on Computing
Science Education, SIGCSE ’16, ACM, New York, NY, USA, 2016, pp.
90–95. doi:10.1145/2839509.2844558.
URL http://doi.acm.org/10.1145/2839509.2844558

[15] L. L. Werner, B. Hanks, C. McDowell, Pair-programming helps female
computer science students, J. Educ. Resour. Comput. 4 (1) (Mar.
2004). doi:10.1145/1060071.1060075.
URL http://doi.acm.org/10.1145/1060071.1060075

[16] M. Celepkolu, K. E. Boyer, Thematic analysis of students’ reflections
on pair programming in cs1, in: Proceedings of the 49th ACM
Technical Symposium on Computer Science Education, SIGCSE ’18,
ACM, New York, NY, USA, 2018, pp. 771–776. doi:10.1145/3159450.
3159516.
URL http://doi.acm.org/10.1145/3159450.3159516

[17] F. J. Rodríguez, K. M. Price, K. E. Boyer, Exploring the pair pro-
gramming process: Characteristics of effective collaboration, in:
Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education, SIGCSE ’17, ACM, New York, NY, USA,
2017, pp. 507–512. doi:10.1145/3017680.3017748.
URL http://doi.acm.org/10.1145/3017680.3017748

[18] B. F. Hanks, Distributed pair programming: An empirical study, in:
C. Zannier, H. Erdogmus, L. Lindstrom (Eds.), Extreme Programming
and Agile Methods - XP/Agile Universe 2004, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004, pp. 81–91.

[19] A. Oram, G. Wilson, Making Software: What Really Works, and Why
We Believe It, 1st Edition, O’Reilly Media, Inc., 2010.

[20] L. Williams, B. Kessler, The effects of "pair-pressure" and "pair-
learning" on software engineering education, in: Proceedings of
the 13th Conference on Software Engineering Education & Training,
CSEET ’00, IEEE Computer Society, Washington, DC, USA, 2000, pp.
59–.
URL http://dl.acm.org/citation.cfm?id=794188.794326

[21] H. Gallis, E. Arisholm, A transition from partner programming to
pair programming-an industrial case study, 2002.

[22] C. Berger, R. Calabrese, “some exploration in initial interaction
and beyond: Toward a developmental theory of interpersonal
communication.”, Human Communication Research 1 (2006) 99 –
112. doi:10.1111/j.1468-2958.1975.tb00258.x.

[23] E. P. Torrance, Influence of dyadic interaction on creative functioning.,
Psychological reports 26 2 (1970) 391–4.

[24] H. J. Spiers, B. C. Love, M. E. Le Pelley, C. E. Gibb, R. A. Murphy,
Anterior temporal lobe tracks the formation of prejudice, J. Cognitive
Neuroscience 29 (3) (2017) 530–544. doi:10.1162/jocn_a_01056.
URL https://doi.org/10.1162/jocn_a_01056

[25] D. Perez-Marin, I. Pascual-Nieto, Conversational Agents and Natural
Language Interaction: Techniques and Effective Practices, Information
Science Reference - Imprint of: IGI Publishing, Hershey, PA, 2011.

[26] S. Diederich, A. Brendel, L. Kolbe, On conversational agents in
information systems research: Analyzing the past to guide future
work, 2019.

[27] T. Wagner, R. A. Compton, Creating innovators: The making of young
people who will change the world, Simon and Schuster, 2012.

[28] Y. Zhao, World class learners: Educating creative and entrepreneurial
students, Corwin Press, 2012.

[29] B. Edelman, Inc, Creativity and education: Why it matters (2010).
URL http://www.adobe.com/aboutadobe/pressroom/pdfs/Adobe_
Creativity_and_Education_Why_It_Matters_study.pdf

[30] M. F. Jung, J. J. Lee, N. DePalma, S. O. Adalgeirsson, P. J. Hinds,
C. Breazeal, Engaging robots: Easing complex human-robot teamwork
using backchanneling, in: Proceedings of the 2013 Conference on
Computer Supported Cooperative Work, CSCW ’13, ACM, New York,
NY, USA, 2013, pp. 1555–1566. doi:10.1145/2441776.2441954.
URL http://doi.acm.org/10.1145/2441776.2441954

[31] B. Reeves, C. Nass, The media equation: How people treat computers,
television, and new media like real people and places, Bibliovault
OAI Repository, the University of Chicago Press (01 1996).

[32] L. Swartz, B. A. Nardi, Why people hate the paperclip: Labels,
appearance, behavior, and social responses to user interface agents,
Tech. rep. (2003).

[33] S. Isaksen, D. Treffinger, Celebrating 50 years of reflective practice:
Versions of creative problem solving, The Journal of Creative Behavior
38 (06 2004). doi:10.1002/j.2162-6057.2004.tb01234.x.

[34] A. F. Osborn, Applied imagination : principles and procedures of
creative thinking / by Alex F. Osborn, C. Scribner New York, 1953.

[35] M. Page-Jones, The Practical Guide to Structured Systems Design:
2Nd Edition, Yourdon Press, Upper Saddle River, NJ, USA, 1988.

[36] S. Parnes, Creative behavior workbook, Scribner, New York, 1967.
[37] R. E. Mayer, The psychology of how novices learn computer

programming, ACM Comput. Surv. 13 (1) (1981) 121–141. doi:
10.1145/356835.356841.
URL http://doi.acm.org/10.1145/356835.356841

[38] D. N. Perkins, F. Martin, Fragile knowledge and neglected strategies
in novice programmers, in: Papers Presented at the First Workshop
on Empirical Studies of Programmers on Empirical Studies of
Programmers, Ablex Publishing Corp., Norwood, NJ, USA, 1986, pp.
213–229.
URL http://dl.acm.org/citation.cfm?id=21842.28896

[39] T. Bipp, A. Lepper, D. Schmedding, Pair programming in software
development teams - an empirical study of its benefits, Inf. Softw.
Technol. 50 (3) (2008) 231–240. doi:10.1016/j.infsof.2007.05.
006.
URL http://dx.doi.org/10.1016/j.infsof.2007.05.006

[40] Y.-H. Seo, J.-H. Kim, Analyzing the effects of coding education through
pair programming for the computational thinking and creativity of

https://doi.org/10.1177/0963721415599543
https://doi.org/10.1109/ISESE.2003.1237973
https://doi.org/10.1007/978-3-540-76805-0_37
https://doi.org/10.1007/978-3-540-76805-0_37
https://doi.org/10.1109/ADC.2005.37
http://dl.acm.org/citation.cfm?id=377517.377531
http://dl.acm.org/citation.cfm?id=377517.377531
http://doi.acm.org/10.1145/2652524.2652529
https://doi.org/10.1145/2652524.2652529
https://doi.org/10.1145/2652524.2652529
http://doi.acm.org/10.1145/2652524.2652529
http://doi.acm.org/10.1145/563340.563353
http://doi.acm.org/10.1145/563340.563353
http://doi.acm.org/10.1145/563340.563353
https://doi.org/10.1145/563340.563353
http://doi.acm.org/10.1145/563340.563353
http://doi.acm.org/10.1145/1028174.971307
http://doi.acm.org/10.1145/1028174.971307
https://doi.org/10.1145/1028174.971307
https://doi.org/10.1145/1028174.971307
http://doi.acm.org/10.1145/1028174.971307
http://dl.acm.org/citation.cfm?id=776816.776899
http://dl.acm.org/citation.cfm?id=776816.776899
http://dl.acm.org/citation.cfm?id=776816.776899
http://doi.acm.org/10.1145/2839509.2844558
http://doi.acm.org/10.1145/2839509.2844558
https://doi.org/10.1145/2839509.2844558
http://doi.acm.org/10.1145/2839509.2844558
http://doi.acm.org/10.1145/1060071.1060075
http://doi.acm.org/10.1145/1060071.1060075
https://doi.org/10.1145/1060071.1060075
http://doi.acm.org/10.1145/1060071.1060075
http://doi.acm.org/10.1145/3159450.3159516
http://doi.acm.org/10.1145/3159450.3159516
https://doi.org/10.1145/3159450.3159516
https://doi.org/10.1145/3159450.3159516
http://doi.acm.org/10.1145/3159450.3159516
http://doi.acm.org/10.1145/3017680.3017748
http://doi.acm.org/10.1145/3017680.3017748
https://doi.org/10.1145/3017680.3017748
http://doi.acm.org/10.1145/3017680.3017748
http://dl.acm.org/citation.cfm?id=794188.794326
http://dl.acm.org/citation.cfm?id=794188.794326
http://dl.acm.org/citation.cfm?id=794188.794326
https://doi.org/10.1111/j.1468-2958.1975.tb00258.x
https://doi.org/10.1162/jocn_a_01056
https://doi.org/10.1162/jocn_a_01056
https://doi.org/10.1162/jocn_a_01056
http://www.adobe.com/aboutadobe/pressroom/pdfs/Adobe_Creativity_and_Education_Why_It_Matters_study.pdf
http://www.adobe.com/aboutadobe/pressroom/pdfs/Adobe_Creativity_and_Education_Why_It_Matters_study.pdf
http://www.adobe.com/aboutadobe/pressroom/pdfs/Adobe_Creativity_and_Education_Why_It_Matters_study.pdf
http://doi.acm.org/10.1145/2441776.2441954
http://doi.acm.org/10.1145/2441776.2441954
https://doi.org/10.1145/2441776.2441954
http://doi.acm.org/10.1145/2441776.2441954
https://doi.org/10.1002/j.2162-6057.2004.tb01234.x
http://doi.acm.org/10.1145/356835.356841
http://doi.acm.org/10.1145/356835.356841
https://doi.org/10.1145/356835.356841
https://doi.org/10.1145/356835.356841
http://doi.acm.org/10.1145/356835.356841
http://dl.acm.org/citation.cfm?id=21842.28896
http://dl.acm.org/citation.cfm?id=21842.28896
http://dl.acm.org/citation.cfm?id=21842.28896
http://dx.doi.org/10.1016/j.infsof.2007.05.006
http://dx.doi.org/10.1016/j.infsof.2007.05.006
https://doi.org/10.1016/j.infsof.2007.05.006
https://doi.org/10.1016/j.infsof.2007.05.006
http://dx.doi.org/10.1016/j.infsof.2007.05.006

elementary school students, Indian Journal of Science and Technology
9 (12 2016). doi:10.17485/ijst/2016/v9i46/107837.

[41] A. Begel, N. Nagappan, Pair programming: what’s in it for me?,
in: ESEM ’08: Proceedings of the Second ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement,
esem ’08: proceedings of the second acm-ieee international
symposium on empirical software engineering and measurement
Edition, ACM, 2008, pp. 120–128.
URL https://www.microsoft.com/en-us/research/publication/
pair-programming-whats-in-it-for-me/

[42] E. Howard, D. Evans, J. Courte, C. Bishop-Clark, A qualitative look
at alice and pair-programming, Number 7 (08 2009).

[43] A. Stolcke, N. Coccaro, R. Bates, P. Taylor, C. Van Ess-Dykema,
K. Ries, E. Shriberg, D. Jurafsky, R. Martin, M. Meteer, Dialogue act
modeling for automatic tagging and recognition of conversational
speech, Comput. Linguist. 26 (3) (2000) 339–373. doi:10.1162/
089120100561737.
URL https://doi.org/10.1162/089120100561737

[44] A. Vail, K. Boyer, Identifying effective moves in tutoring: On the
refinement of dialogue act annotation schemes, 2014, pp. 199–209.
doi:10.1007/978-3-319-07221-0_24.

[45] J. Chong, T. Hurlbutt, The social dynamics of pair programming,
in: Proceedings of the 29th International Conference on Software
Engineering, ICSE ’07, IEEE Computer Society, Washington, DC, USA,
2007, pp. 354–363. doi:10.1109/ICSE.2007.87.
URL https://doi.org/10.1109/ICSE.2007.87

[46] E. Sklar, D. Richards, The use of agents in human learning systems,
in: Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS ’06, ACM, New
York, NY, USA, 2006, pp. 767–774. doi:10.1145/1160633.1160768.
URL http://doi.acm.org/10.1145/1160633.1160768

[47] J. A. R. Uresti, Should i teach my computer peer? some issues
in teaching a learning companion, in: G. Gauthier, C. Frasson,
K. VanLehn (Eds.), Intelligent Tutoring Systems, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2000, pp. 103–112.

[48] J. Ramirez Uresti, B. Du Boulay, Expertise, motivation and teaching
in learning companion systems., International Journal of Artificial
Intelligence in Education 14 (2004) 193–231.

[49] T.-W. Chan, Learning companion systems, social learning systems,
and the global social learning club, Journal of Artificial Intelligence
in Education 7 (2) (1996) 125.
URL https://www.learntechlib.org/p/82394

[50] L. Sheremetov, A. G. Arenas, Eva: an interactive web-based collabora-
tive learning environment, Computers & Education 39 (2) (2002) 161
– 182. doi:https://doi.org/10.1016/S0360-1315(02)00030-1.
URL http://www.sciencedirect.com/science/article/pii/
S0360131502000301

[51] Woolf, Copyright page, in: Building Intelligent Interactive Tutors,
Morgan Kaufmann, San Francisco, 2009, p. iii. doi:https:
//doi.org/10.1016/B978-0-12-373594-2.00016-2.
URL http://www.sciencedirect.com/science/article/pii/
B9780123735942000162

[52] K.-W. Han, E. Lee, Y. Lee, The impact of a peer-learning agent
based on pair programming in a programming course, Education,
IEEE Transactions on 53 (2010) 318 – 327. doi:10.1109/TE.2009.
2019121.

[53] A. Wood, P. Rodeghero, A. Armaly, C. McMillan, Detecting speech
act types in developer question/answer conversations during bug
repair, in: Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2018, ACM, New
York, NY, USA, 2018, pp. 491–502. doi:10.1145/3236024.3236031.
URL http://doi.acm.org/10.1145/3236024.3236031

[54] C. WEST, D. H. ZIMMERMAN, Doing gender, Gender & Society 1 (2)
(1987) 125–151. doi:10.1177/0891243287001002002.
URL https://doi.org/10.1177/0891243287001002002

[55] J. Butler, Revisiting bodies and pleasures, Theory, Culture & Society
16 (2) (1999) 11–20. doi:10.1177/02632769922050520.
URL https://doi.org/10.1177/02632769922050520

[56] S. Leavy, Gender bias in artificial intelligence: The need for diversity
and gender theory in machine learning, in: Proceedings of the 1st
International Workshop on Gender Equality in Software Engineering,
GE ’18, ACM, New York, NY, USA, 2018, pp. 14–16. doi:10.1145/

3195570.3195580.
URL http://doi.acm.org/10.1145/3195570.3195580

[57] S. Kuttal, K. Gerstner, A. Bejarano, Remote pair-programming in
online cs education: Investigating through a gender lens, IEEE
Symposium on Visual Languages & Human-Centric Computing
(2019).

[58] P. Baheti, D. Gehringer, P. Stotts, Exploring the efficacy of distributed
pair programming, 2002. doi:10.1007/3-540-45672-4_20.

[59] R. Duque, C. Bravo, Analyzing work productivity and program quality
in collaborative programming, in: Proceedings of the 2008 The Third
International Conference on Software Engineering Advances, ICSEA
’08, IEEE Computer Society, Washington, DC, USA, 2008, pp. 270–276.
doi:10.1109/ICSEA.2008.82.
URL https://doi.org/10.1109/ICSEA.2008.82

[60] B. Hanks, Empirical evaluation of distributed pair programming,
International Journal of Human-Computer Studies 66 (2008) 530–544.
doi:10.1016/j.ijhcs.2007.10.003.

[61] Eclipse IDE (2019).
URL https://www.eclipse.org/

[62] TeamViewer (2019).
URL https://www.teamviewer.com/en-us/

[63] C. Lewis, Using the "thinking-aloud" method in cognitive interface
design, IBM T.J. Watson Research Center, Yorktown Heights, N.Y.,
1982.

[64] D. Jones, S. Fleming, What use is a backseat driver? a qualitative
investigation of pair programming, 2013, pp. 103–110. doi:10.1109/
VLHCC.2013.6645252.

[65] L. Williams, R. Kessler, W. Cunningham, R. Jeffries, Strengthening
the case for pair-programming, Software, IEEE 17 (2000) 19 – 25.
doi:10.1109/52.854064.

[66] Morae (2019).
URL http://www.techsmith.com/morae.asp

[67] P. Jaccard, Etude de la distribution florale dans une portion des alpes
et du jura, Bulletin de la Societe Vaudoise des Sciences Naturelles
37 (1901) 547–579. doi:10.5169/seals-266450.

[68] V. Braun, V. Clarke, Using thematic analysis in psychology, Qual-
itative research in psychology 3 (2006) 77–101. doi:10.1191/
1478088706qp063oa.

[69] S. Amershi, D. Weld, M. Vorvoreanu, A. Fourney, B. Nushi, P. Collisson,
J. Suh, S. Iqbal, P. N. Bennett, K. Inkpen, J. Teevan, R. Kikin-Gil,
E. Horvitz, Guidelines for human-ai interaction, in: Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems,
CHI ’19, ACM, New York, NY, USA, 2019, pp. 3:1–3:13. doi:10.1145/
3290605.3300233.
URL http://doi.acm.org/10.1145/3290605.3300233

[70] R. L. West, Introducing Communication Theory: Analysis and
Application, McGraw-Hill, Inc., New York, NY, USA, 2007.

[71] L. Paul Green, THE WIZARD OF OZ: A TOOL FOR RAPID DEVELOP-
MENT OF USER INTERFACES.
URL https://books.google.com/books?id=XhWEpS1OooAC

[72] T. K. Landauer, Psychology as a mother of invention, ACM SIGCHI
Bulletin 18 (4) (1987) 333–335.

[73] J. Wilson, D. Rosenberg, Rapid prototyping for user interface design,
in: Handbook of human-computer interaction, Elsevier, 1988, pp.
859–875.

[74] N. Dahlbäck, A. Jönsson, L. Ahrenberg, Wizard of oz studies—why
and how, Knowledge-based systems 6 (4) (1993) 258–266.

[75] T. Bickmore, J. Cassell, Relational agents: A model and implementa-
tion of building user trust, in: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’01, ACM, New York,
NY, USA, 2001, pp. 396–403. doi:10.1145/365024.365304.
URL http://doi.acm.org/10.1145/365024.365304

[76] J. Bradley, D. Benyon, O. Mival, N. Webb, Wizard of oz experiments
and companion dialogues, in: Proceedings of the 24th BCS Interaction
Specialist Group Conference, British Computer Society, 2010, pp. 117–
123.

[77] P. Wargnier, G. Carletti, Y. Laurent-Corniquet, S. Benveniste, P. Jou-
velot, A.-S. Rigaud, Field evaluation with cognitively-impaired older
adults of attention management in the embodied conversational
agent louise, in: 2016 IEEE International Conference on Serious
Games and Applications for Health (SeGAH), IEEE, 2016, pp. 1–8.

[78] FACSvatar (2018).
URL https://github.com/NumesSanguis/FACSvatar

https://doi.org/10.17485/ijst/2016/v9i46/107837
https://www.microsoft.com/en-us/research/publication/pair-programming-whats-in-it-for-me/
https://www.microsoft.com/en-us/research/publication/pair-programming-whats-in-it-for-me/
https://www.microsoft.com/en-us/research/publication/pair-programming-whats-in-it-for-me/
https://doi.org/10.1162/089120100561737
https://doi.org/10.1162/089120100561737
https://doi.org/10.1162/089120100561737
https://doi.org/10.1162/089120100561737
https://doi.org/10.1162/089120100561737
https://doi.org/10.1162/089120100561737
https://doi.org/10.1007/978-3-319-07221-0_24
https://doi.org/10.1109/ICSE.2007.87
https://doi.org/10.1109/ICSE.2007.87
https://doi.org/10.1109/ICSE.2007.87
http://doi.acm.org/10.1145/1160633.1160768
https://doi.org/10.1145/1160633.1160768
http://doi.acm.org/10.1145/1160633.1160768
https://www.learntechlib.org/p/82394
https://www.learntechlib.org/p/82394
https://www.learntechlib.org/p/82394
http://www.sciencedirect.com/science/article/pii/S0360131502000301
http://www.sciencedirect.com/science/article/pii/S0360131502000301
https://doi.org/https://doi.org/10.1016/S0360-1315(02)00030-1
http://www.sciencedirect.com/science/article/pii/S0360131502000301
http://www.sciencedirect.com/science/article/pii/S0360131502000301
http://www.sciencedirect.com/science/article/pii/B9780123735942000162
https://doi.org/https://doi.org/10.1016/B978-0-12-373594-2.00016-2
https://doi.org/https://doi.org/10.1016/B978-0-12-373594-2.00016-2
http://www.sciencedirect.com/science/article/pii/B9780123735942000162
http://www.sciencedirect.com/science/article/pii/B9780123735942000162
https://doi.org/10.1109/TE.2009.2019121
https://doi.org/10.1109/TE.2009.2019121
http://doi.acm.org/10.1145/3236024.3236031
http://doi.acm.org/10.1145/3236024.3236031
http://doi.acm.org/10.1145/3236024.3236031
https://doi.org/10.1145/3236024.3236031
http://doi.acm.org/10.1145/3236024.3236031
https://doi.org/10.1177/0891243287001002002
https://doi.org/10.1177/0891243287001002002
https://doi.org/10.1177/0891243287001002002
https://doi.org/10.1177/02632769922050520
https://doi.org/10.1177/02632769922050520
https://doi.org/10.1177/02632769922050520
http://doi.acm.org/10.1145/3195570.3195580
http://doi.acm.org/10.1145/3195570.3195580
https://doi.org/10.1145/3195570.3195580
https://doi.org/10.1145/3195570.3195580
http://doi.acm.org/10.1145/3195570.3195580
https://doi.org/10.1007/3-540-45672-4_20
https://doi.org/10.1109/ICSEA.2008.82
https://doi.org/10.1109/ICSEA.2008.82
https://doi.org/10.1109/ICSEA.2008.82
https://doi.org/10.1109/ICSEA.2008.82
https://doi.org/10.1016/j.ijhcs.2007.10.003
https://www.eclipse.org/
https://www.eclipse.org/
https://www.teamviewer.com/en-us/
https://www.teamviewer.com/en-us/
https://doi.org/10.1109/VLHCC.2013.6645252
https://doi.org/10.1109/VLHCC.2013.6645252
https://doi.org/10.1109/52.854064
http://www.techsmith.com/morae.asp
http://www.techsmith.com/morae.asp
https://doi.org/10.5169/seals-266450
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
http://doi.acm.org/10.1145/3290605.3300233
https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1145/3290605.3300233
http://doi.acm.org/10.1145/3290605.3300233
https://books.google.com/books?id=XhWEpS1OooAC
https://books.google.com/books?id=XhWEpS1OooAC
https://books.google.com/books?id=XhWEpS1OooAC
http://doi.acm.org/10.1145/365024.365304
http://doi.acm.org/10.1145/365024.365304
https://doi.org/10.1145/365024.365304
http://doi.acm.org/10.1145/365024.365304
https://github.com/NumesSanguis/FACSvatar
https://github.com/NumesSanguis/FACSvatar

[79] Google text-to-speech python library (2019).
URL https://github.com/pndurette/gTTS

[80] Human-Agent study protocol is available at (2020).
URL https://docs.google.com/document/d/
16ARnq3vX8bM4FIk7keKAy7sfeC57_jZTCGHuThTO6BU/edit?
usp=sharing

[81] L. D. Riek, Wizard of oz studies in hri: a systematic review and new
reporting guidelines, Journal of Human-Robot Interaction 1 (1) (2012)
119–136.

[82] Explain Everything (2019).
URL https://explaineverything.com/

[83] LiveBoard (2019).
URL https://liveboard.online/

[84] RealTimeBoard (2019).
URL https://realtimeboard.com/

[85] M. Terry, E. D. Mynatt, Side views: Persistent, on-demand previews
for open-ended tasks, in: Proceedings of the 15th Annual ACM
Symposium on User Interface Software and Technology, UIST ’02,
ACM, New York, NY, USA, 2002, pp. 71–80. doi:10.1145/571985.
571996.
URL http://doi.acm.org/10.1145/571985.571996

[86] M. Terry, E. D. Mynatt, K. Nakakoji, Y. Yamamoto, Variation in element
and action: Supporting simultaneous development of alternative
solutions, in: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’04, ACM, New York, NY, USA,
2004, pp. 711–718. doi:10.1145/985692.985782.
URL http://doi.acm.org/10.1145/985692.985782

[87] B. Hartmann, L. Yu, A. Allison, Y. Yang, S. Klemmer, Design as explo-
ration: Creating interface alternatives through parallel authoring and
runtime tuning, 2008, pp. 91–100. doi:10.1145/1449715.1449732.

[88] B. Hartmann, S. Follmer, A. Ricciardi, T. Cardenas, S. R. Klemmer,
D.note: Revising user interfaces through change tracking, annotations,
and alternatives, in: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’10, ACM, New York, NY,
USA, 2010, pp. 493–502. doi:10.1145/1753326.1753400.
URL http://doi.acm.org/10.1145/1753326.1753400

[89] R. Kumar, J. O. Talton, S. Ahmad, S. R. Klemmer, Bricolage: Example-
based retargeting for web design, in: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’11, ACM,
New York, NY, USA, 2011, pp. 2197–2206. doi:10.1145/1978942.
1979262.
URL http://doi.acm.org/10.1145/1978942.1979262

[90] A. J. Ko, B. A. Myers, Designing the whyline: A debugging interface
for asking questions about program behavior, in: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’04, ACM, New York, NY, USA, 2004, pp. 151–158. doi:10.1145/
985692.985712.
URL http://doi.acm.org/10.1145/985692.985712

[91] A. J. Ko, B. A. Myers, Finding causes of program output with the
java whyline, in: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’09, ACM, New York, NY, USA,
2009, pp. 1569–1578. doi:10.1145/1518701.1518942.
URL http://doi.acm.org/10.1145/1518701.1518942

[92] D. Tannen, THE POWER of Talk: Who Gets Heard and why, HBR
Onpoint [Harvard Business Review], Harvard Business Review, 2005.
URL https://books.google.com/books?id=RaPLswEACAAJ

[93] J. Nielsen, R. Molich, Heuristic evaluation of user interfaces, in:
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’90, ACM, New York, NY, USA, 1990, pp.
249–256. doi:10.1145/97243.97281.
URL http://doi.acm.org/10.1145/97243.97281

[94] K. L. Koay, D. S. Syrdal, M. L. Walters, K. Dautenhahn, Five weeks
in the robot house – exploratory human-robot interaction trials
in a domestic setting, in: 2009 Second International Conferences
on Advances in Computer-Human Interactions, 2009, pp. 219–226.
doi:10.1109/ACHI.2009.62.

[95] A. Shamekhi, Q. V. Liao, D. Wang, R. K. E. Bellamy, T. Erickson, Face
value? exploring the effects of embodiment for a group facilitation
agent, in: Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems, CHI ’18, ACM, New York, NY, USA, 2018, pp.
391:1–391:13. doi:10.1145/3173574.3173965.
URL http://doi.acm.org/10.1145/3173574.3173965

[96] J. Gratch, N. Wang, J. Gerten, E. Fast, R. Duffy, Creating rapport with
virtual agents, in: C. Pelachaud, J.-C. Martin, E. André, G. Chollet,

K. Karpouzis, D. Pelé (Eds.), Intelligent Virtual Agents, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007, pp. 125–138.

[97] A. Takeuchi, T. Naito, Situated facial displays: Towards social
interaction, in: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, CHI ’95, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 1995, pp. 450–455.
doi:10.1145/223904.223965.
URL http://dx.doi.org/10.1145/223904.223965

[98] S. v. Mulken, E. André, J. Müller, An empirical study on the
trustworthiness of life-like interface agents, in: Proceedings of
the HCI International ’99 (the 8th International Conference on
Human-Computer Interaction) on Human-Computer Interaction:
Communication, Cooperation, and Application Design-Volume 2 -
Volume 2, L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 1999, pp.
152–156.
URL http://dl.acm.org/citation.cfm?id=647944.741893

[99] S. van Mulken, E. André, J. Müller, The persona effect: How
substantial is it?, in: H. Johnson, L. Nigay, C. Roast (Eds.), People
and Computers XIII, Springer London, London, 1998, pp. 53–66.

[100] D. Hasegawa, J. Cassell, K. Araki, The role of embodiment and
perspective in direction-giving systems (01 2010).

[101] R. Häuslschmid, M. von Bülow, B. Pfleging, A. Butz, Supportingtrust
in autonomous driving, in: Proceedings of the 22Nd International
Conference on Intelligent User Interfaces, IUI ’17, ACM, New York,
NY, USA, 2017, pp. 319–329. doi:10.1145/3025171.3025198.
URL http://doi.acm.org/10.1145/3025171.3025198

[102] D. M. Dehn, S. van Mulken, The impact of animated interface agents:
A review of empirical research, Int. J. Hum.-Comput. Stud. 52 (1)
(2000) 1–22. doi:10.1006/ijhc.1999.0325.
URL http://dx.doi.org/10.1006/ijhc.1999.0325

[103] N. Yee, J. N. Bailenson, K. Rickertsen, A meta-analysis of the impact
of the inclusion and realism of human-like faces on user experiences
in interfaces, in: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’07, ACM, New York, NY, USA,
2007, pp. 1–10. doi:10.1145/1240624.1240626.
URL http://doi.acm.org/10.1145/1240624.1240626

[104] T. Kessler, K. Stowers, J. Brill, P. Hancock, Comparisons of human-
human trust with other forms of human-technology trust, Pro-
ceedings of the Human Factors and Ergonomics Society Annual
Meeting 61 (1) (2017) 1303–1307. arXiv:https://doi.org/10.
1177/1541931213601808, doi:10.1177/1541931213601808.
URL https://doi.org/10.1177/154193121360180

https://github.com/pndurette/gTTS
https://github.com/pndurette/gTTS
https://docs.google.com/document/d/16ARnq3vX8bM4FIk7keKAy7sfeC57_jZTCGHuThTO6BU/edit?usp=sharing
https://docs.google.com/document/d/16ARnq3vX8bM4FIk7keKAy7sfeC57_jZTCGHuThTO6BU/edit?usp=sharing
https://docs.google.com/document/d/16ARnq3vX8bM4FIk7keKAy7sfeC57_jZTCGHuThTO6BU/edit?usp=sharing
https://docs.google.com/document/d/16ARnq3vX8bM4FIk7keKAy7sfeC57_jZTCGHuThTO6BU/edit?usp=sharing
https://explaineverything.com/
https://explaineverything.com/
https://liveboard.online/
https://liveboard.online/
https://realtimeboard.com/
https://realtimeboard.com/
http://doi.acm.org/10.1145/571985.571996
http://doi.acm.org/10.1145/571985.571996
https://doi.org/10.1145/571985.571996
https://doi.org/10.1145/571985.571996
http://doi.acm.org/10.1145/571985.571996
http://doi.acm.org/10.1145/985692.985782
http://doi.acm.org/10.1145/985692.985782
http://doi.acm.org/10.1145/985692.985782
https://doi.org/10.1145/985692.985782
http://doi.acm.org/10.1145/985692.985782
https://doi.org/10.1145/1449715.1449732
http://doi.acm.org/10.1145/1753326.1753400
http://doi.acm.org/10.1145/1753326.1753400
https://doi.org/10.1145/1753326.1753400
http://doi.acm.org/10.1145/1753326.1753400
http://doi.acm.org/10.1145/1978942.1979262
http://doi.acm.org/10.1145/1978942.1979262
https://doi.org/10.1145/1978942.1979262
https://doi.org/10.1145/1978942.1979262
http://doi.acm.org/10.1145/1978942.1979262
http://doi.acm.org/10.1145/985692.985712
http://doi.acm.org/10.1145/985692.985712
https://doi.org/10.1145/985692.985712
https://doi.org/10.1145/985692.985712
http://doi.acm.org/10.1145/985692.985712
http://doi.acm.org/10.1145/1518701.1518942
http://doi.acm.org/10.1145/1518701.1518942
https://doi.org/10.1145/1518701.1518942
http://doi.acm.org/10.1145/1518701.1518942
https://books.google.com/books?id=RaPLswEACAAJ
https://books.google.com/books?id=RaPLswEACAAJ
http://doi.acm.org/10.1145/97243.97281
https://doi.org/10.1145/97243.97281
http://doi.acm.org/10.1145/97243.97281
https://doi.org/10.1109/ACHI.2009.62
http://doi.acm.org/10.1145/3173574.3173965
http://doi.acm.org/10.1145/3173574.3173965
http://doi.acm.org/10.1145/3173574.3173965
https://doi.org/10.1145/3173574.3173965
http://doi.acm.org/10.1145/3173574.3173965
http://dx.doi.org/10.1145/223904.223965
http://dx.doi.org/10.1145/223904.223965
https://doi.org/10.1145/223904.223965
http://dx.doi.org/10.1145/223904.223965
http://dl.acm.org/citation.cfm?id=647944.741893
http://dl.acm.org/citation.cfm?id=647944.741893
http://dl.acm.org/citation.cfm?id=647944.741893
http://doi.acm.org/10.1145/3025171.3025198
http://doi.acm.org/10.1145/3025171.3025198
https://doi.org/10.1145/3025171.3025198
http://doi.acm.org/10.1145/3025171.3025198
http://dx.doi.org/10.1006/ijhc.1999.0325
http://dx.doi.org/10.1006/ijhc.1999.0325
https://doi.org/10.1006/ijhc.1999.0325
http://dx.doi.org/10.1006/ijhc.1999.0325
http://doi.acm.org/10.1145/1240624.1240626
http://doi.acm.org/10.1145/1240624.1240626
http://doi.acm.org/10.1145/1240624.1240626
https://doi.org/10.1145/1240624.1240626
http://doi.acm.org/10.1145/1240624.1240626
https://doi.org/10.1177/154193121360180
https://doi.org/10.1177/154193121360180
http://arxiv.org/abs/https://doi.org/10.1177/1541931213601808
http://arxiv.org/abs/https://doi.org/10.1177/1541931213601808
https://doi.org/10.1177/1541931213601808
https://doi.org/10.1177/154193121360180

