
History Repeats Itself More Easily When You Log It: Versioning for Mashups

Sandeep Kaur Kuttal, Anita Sarma, and Gregg Rothermel
University of Nebraska–Lincoln

{skuttal, asarma, grother}@cse.unl.edu

Abstract—Web mashup environments provide a way for
users to combine data from web applications and services
to create new content. Currently, these environments do not
provide support for tracking the development histories of
mashups. We have thus added configuration management
support to the Yahoo! Pipes mashup environment. We describe
this support, and provide results of an experiment studying
the ability of programmers to create and debug mashups in its
presence. Our results show that versioning support can help
both groups of users do both tasks better.

I. INTRODUCTION

Web mashups allow end-user and professional program-
mers to obtain data from various web sites and services,
and perform various operations on and combine that data
to achieve various goals. Mashup environments such as
Yahoo! Pipes [9] and IBM Mashup Maker [5] help them
perform these tasks. While mashup programming is consid-
ered to be potentially useful, creating mashups still poses
difficulties [10], [11], because the application programming
interfaces, data structures and programming models involved
can quickly become unmanageable [6]. Debugging mashups
is also challenging: in one study, end users spent 76.3% of
their time on this task alone [1], [2].

Mashup programming environments provide repositories
that support the reuse and development of mashups. Cur-
rent repositories, however, do not provide information on
how mashups have been developed over time, as users
clone, incrementally create, and enhance them. Professional
developers rely on configuration management systems to
keep prior versions of systems and store information about
changes [4]. Versioning information indicates the process by
which systems evolve, helping developers better understand
them. It also helps developers track cases in which faults
have been introduced and correct them.

Motivated by these observations, we have been investigat-
ing whether versioning features can be used by mashup pro-
grammers. In prior work [7], we described an approach for
supporting versioning in the Yahoo! Pipes environment. Our
approach involved adding basic configuration management
to the environment with a simple interface. An exploratory
study showed that our versioning support helped them create
mashups more efficiently.

In this work we have extended our versioning support,
providing additional user interface assistance to help users
debug faulty mashups. We have conducted a controlled

experiment involving participants who have, and do not
have, formal programming training and experience, studying
questions related both to the creation and debugging of
pipes. Our experiment results confirm that both groups of
users can create pipes more effectively and efficiently with
the aid of versioning support, and that they can debug pipes
more effectively.

II. YAHOO! PIPES

Yahoo! Pipes [9] is a semi-automatic mashup environ-
ment. Yahoo! Pipes “programs” combine simple commands
together such that the output of one acts as the input
for the other. The Yahoo! Pipes engine also facilitates the
wiring of modules together and the transfer of data between
them. Figure 1 shows the interface of the Yahoo! Pipes
environment with various components of the interface. Since
its launch in 2007, nearly 90,000 developers have created
mashups using this environment, and an estimated 5,000,000
pipe runs occur each day [6].

III. VERSIONING FOR YAHOO! PIPES

We have provided versioning support within the Yahoo!
Pipes environment [7]. Whenever a pipe programmer saves
or clones a pipe, our system automatically generates a new
version for the pipe, with version numbers created in chrono-
logical order (V1, V2,....,Vn). When a pipe programmer
wishes to retrieve a prior version our system allows them
to do so; they can then view, edit, and run a version.

To help pipe programmers work with versions we pro-
vided an initial interface including “undo” and “redo” but-

!"#$"%&

'"(")*+*(%&

,-./0*&

12%+&-3&,-./0*%&

Figure 1. Yahoo! Pipes interface

2011 IEEE Symposium on Visual Languages and Human-Centric Computing

978-1-4577-1247-0/11/$26.00 ©2011 IEEE 69

Figure 2. Pipes Plumber interface

tons that allow them to progress forward and backward
through a sequence of versions, and a list view showing
the linear development tree for versions and modules, in the
sequence they were added and removed within each version.
This lets programmers view older versions, and also helps
them see which modules have been added before and after
other modules. When a pipe is run we treat it as a “baseline”
to indicate that it is a version in stable form. Implementation
details can be found in [7].

We have further enhanced our versioning support, which
we now refer to as “Pipes Plumber”. Figure 2 shows the
Pipes Plumber interface, which provides widgets for undo,
redo, and history display as in our prior version (in the
screenshot the latter is expanded to show “Histories of Pipe”
information.)

Pipes Plumber expands on this support in three ways.
First, the pipe history information lists versions in chrono-
logical order, and this may mask cases in which a version
is actually derived from some much older version (e.g., V8
from V3). While we might be able to address this by em-
ploying graphical representations of the versioning history,
currently we display information on version parentage via
tooltips that appear when the pipe programmer hovers over
a given version (see Figure 2).

As a second enhancement, which we believe can be
utilized in debugging as well as in assessing the status
of versions of other pipes, we utilize color coding in the
history information to provide insights into the run status of
versions. Versions in grey are those that were successfully
executed (in Figure 2, the menu item labeled “BASELINE”),
which signifies potential correctness of the pipe since it
returns non-null results. Orange (item labeled “ERROR (No
Results)”) signifies that a pipe execution returned no results,
a probable indication of an error. Finally, green (items
labeled “Tested”) indicates that the pipe programmer has
confidence that a given version is operating correctly, a
status that can be applied to the version through the third
enhancement to the interface, a “Tested” button.

IV. EMPIRICAL STUDY

We evaluated whether “Pipes Plumber” can help mashup
programmers create and debug mashups. Our research ques-
tions were as follows:

• RQ1: Does versioning help mashup programmers cre-
ate pipes more effectively and efficiently?

• RQ2: Does versioning help mashup programmers de-
bug pipes more effectively and efficiently?

A. Participants
We recruited 24 students from the University of Nebraska

who were compensated $20 for their participation. Twelve
of the participants were from the Computer Science depart-
ment, and the rest were from other departments (Science
and Engineering) and had no formal training or experience
in programming. Participants’ ages ranged from 19 to 40
years; 22 were male and two were female.

B. Study Setup and Design
Our study employed a single-factor, within-subjects de-

sign, in which participants conducted both pipe creation
and debugging tasks. The independent variable involved the
presence or absence of versioning information. To measure
effectiveness and efficiency we used two dependent variables
tracking (1) the correctness of pipes following creation or
debugging activities, and (2) the time required to create or
debug a pipe.

In each session, we administered a background ques-
tionnaire and a ten minute tutorial on Yahoo! Pipes. We
then asked the participant to create a small sample pipe.
Next, we asked the participant to complete specific tasks
required for the study. We audio recorded sessions and
logged participant’s on-screen interactions. The total time
required for completion of the study was approximately two
hours, which included around 60 minutes for actual task
performance. At the end we administered an exit survey.

C. Tasks
Our study included two types of tasks, each addressing

one of the research questions. Task1 required participants
to create pipes, given pipes that they could choose to reuse
portions of. Task2 required participants to debug pipes.1

Task1 involved two steps. The first step required a par-
ticipant to understand the functionality of a given pipe.
The second step required them to create a pipe that had
some functionality in common with the given pipe. In
Task1.search, participants were given a pipe that let Korean
users search for a review of any item within a given distance
from a given location with a date on which the review
was published. The next step required the participant to
create a pipe similar to the above; this required participants
to modify the pipe by implementing extra functionality

1For detailed descriptions of the tasks see
http://www.cse.unl.edu/∼skuttal/Tasksonline.pdf.

70

and removing some functionality. Task1.blog was similar in
scope to Task1.search and involved a similar pipe.

In Task2, participants were given pipes containing two
seeded faults. Participants were required to correct the faults
and ensure the pipe worked as stated in the requirements by
comparing their results to the sample output. Task2.movie
involved a pipe that allows a user to generate a list of local
theaters by inputting their zip code. The pipe then collects a
list of movies and displays them, together with show times
and geolocation, on Yahoo! Maps. Participants could also get
a poster and reviews of a movie. Task2.eBay involved a pipe
that allows a user to search for an item within a price range
on an auction site (e.g., eBay, Craigslist). Search results were
limited by user and include the name of the site from which
the item was retrieved.

D. Measures
To evaluate the use of versioning, we measured the times

required to complete tasks and the quality of the resulting
pipes. The quality of pipes was determined by grading the
resultant pipes through a correctness score ranging from 0
to 100. The first author and an undergraduate student not
involved in the work created a grading scheme for the pipes.
They used this to grade pipes individually, and then they
came to consensus on the grading results.

On Task1 40 points were attributed to the correct use of
the modules or the functionality provided to participants.
The remaining 60 points were awarded if the participant
could correctly create the additional modules needed to
complete the task. On Task2, 80 points were assigned if
participants successfully identified and corrected the seeded
errors in the given pipe and remaining 20 points were
allocated to other errors introduced by user.

E. Threats to Validity
Our choice of a within-subject design could lead to learn-

ing effects, since participants perform two tasks (one control,
one treatment). We counterbalanced our tasks (experimental
and control) to reduce this threat. In our post-hoc analysis,
we did not find evidence of bias or consistent differences
correlated with task order. There is a potential for learning
effects in the debugging tasks, but this effect would be
consistent across the treatment groups and would not affect
our results. A second validity threat can arise if our pairs
of subtasks (two per task type) are not of equal complexity.
To limit this threat, we also interchanged the subtasks that
were given to the control and experimental groups.

Our participants were all university students, and our
“end-user” population was primarily engineering students.
All but two participants were male. Participants were asked
to use pipes that were provided to them, rather than pipes
which they had created for themselves. While the reuse
context is important, prior familiarity with pipes could lead
to different results.

Table I
PIPE CREATION TASK: RESULTS SUMMARY

Dependent P-value Treatment CSE EU
variable variable (median) (median)
Correctness 0.002 Control 78.0% 67.5%

Experiment 87.5% 93.0%
Time (minutes) 0.073 Control 12.8 15.5

Experiment 11.1 12.9

F. Results and Analysis
Tables I and II summarize our experiment results.
Research Question 1. We frame our first research question

as two hypotheses. These hypotheses analyze the effect of
the independent variable (presence or absence of versioning)
over the correctness of pipes created and the time required
to complete the task, respectively.
Ha1.1:Pipes created with versioning are more correct.

For both participant groups (CSE denoting Computer
Science and Engineering students, and EU denoting the other
(“end-user”) participants), median correctness scores were
higher in the experimental task (when versioning support
was used) than in the control task (no versioning support),
and variation in scores was lower, with the results more pro-
nounced for EU participants. The median correctness scores
for CSE and EU participants were 78.0% and 67.5% in the
Control group and 87.5% and 93.0% in the Experimental
group, respectively.

An analysis of interaction [3] showed that there were
interaction effects between the EU and CSE participant
groups. We therefore blocked over participant group when
performing our statistical analysis. A SPANOVA [3] on the
results, performed using the R programming language [8],
shows highly statistically significant differences between the
treatments (F=12.518 and p=0.002), indicating that version-
ing helped pipe programmers create more correct pipes.
Ha1.2: Pipes can be created more quickly with versioning.

For both participant groups, median time costs are lower
with versioning support, and variation in time is lower, with
the variation more pronounced for the CSE participants. The
median time cost for CSE and EU participants was 12.8 and
15.5 minutes in the Control group and 11.1 and 12.9 minutes
in the Experimental group, respectively.2

We block over participant group when performing our sta-
tistical analysis because of interaction effects. A SPANOVA
on the results shows marginally significant differences be-
tween the treatments (F=3.569 and p=0.073), suggesting that
versioning plays some role in helping pipe programmers
create pipes more quickly, but with less confidence.

Research Question 2. We frame our second research
question as two hypotheses as well, analyzing the effect of
the independent variable (presence or absence of versioning)

2Two EU participants did not save their pipes after they had finished their
implementations, lost their changes, and had to recreate them. We exclude
those two participants from our sample where time costs are concerned.

71

Table II
PIPE DEBUGGING TASK: RESULTS SUMMARY

Dependent P-value Treatment CSE EU
variable variable (median) (median)
Correctness 0.004 Control 60.0% 60.0%

Experiment 100.0% 67.5%
Time (minutes) 0.104 Control 17.6 18.1

Experiment 10.4 17.6

on the abilities of pipe programmers to debug pipes, in terms
of time cost and correctness outcome.

Ha2.1: Versioning helps pipe programmers debug pipes
more correctly.

For both participant groups, median correctness scores are
higher with versioning support. Median correctness score for
CSE and EU participants was 60.0% in the Control group;
whereas in the Experimental group scores for CSE and EU
participants were 100.0% and 67.5%, respectively.

Due to a presence of interactions, we block over partic-
ipant group when performing the SPANOVA. Results are
statistically significant (F=10.189 and p=0.004) indicating
that versioning did help pipe programmers in debugging with
respect to the correctness of their output.

Ha2.2: Versioning helps pipe programmers debug pipes
more quickly.

Here, results differ across participant groups. The median
time cost for CSE participants was 17.6 minutes and 10.4
minutes for the Control and Experimental groups. The
median time cost for EU participants was 18.1 minutes and
17.6 minutes for the Control and Experimental groups. In
this case, a SPANOVA did not reveal statistically significant
differences between the treatments (e.g. F=2.873 and p=
0.1036), and we cannot support our hypothesis.

Additional Observations. In the pipe creation task, both
CSE and EU participants were able to produce pipes of
comparable quality when using versioning. The correctness
“boost” obtained by CSE participants was less than that
obtained by EU participants, in part because a much larger
number of EU participants had relatively low correctness
scores when creating pipes without the versioning support.
EU participants also required somewhat more time than
CSE participants on the creation task. We suspect that this
difference reflects the EU participants’ lesser knowledge
of versioning concepts, which would lead them to require
more time on the creation tasks, which were newer to them
conceptually than to CSE participants.

In the pipe debugging task, again both participant groups
experienced increases in median correctness values, but CSE
participants experienced greater benefit increases overall,
likely due to their greater experience with debugging in
general. The lack of significant differences in debugging task
times, however, could also in part be due to learning effects
since both groups performed the debugging task second.

V. SUMMARY AND CONCLUSION

We have added versioning support for mashup program-
mers to Yahoo! Pipes. Our results studying the use of
that support in mashup creation and debugging shows that
it helps both end users and CSE students create more
correct pipes; however, we did not see similar benefits in
the time it took participants to complete tasks. This is not
unexpected given that our participants needed to master a
new programming paradigm (pipe based programming) and
new technical interfaces (for Yahoo! Pipes and versioning
support). However, we believe the success of our versioning
support is evident in the correctness of the pipes that were
generated and the participants’ positive feedback.

We intend to extend our environment to provide further
visualization support to mashup programmers. In particular,
we will consider methods for presenting version histories
in forms such as family-tree-like structures, which may
be appealing metaphors for end users. We also intend to
conduct additional studies of our versioning approach in
larger-scale scenarios.

Acknowledgments

This work is partially supported byAFOSR FA9550-09-1-
0129. We thank Dr. Kathy Hanford for providing statistical
expertise and Branden Barber for helping in the experiments.

REFERENCES

[1] J. Cao, K. Rector, T. H. Park, S. D. Fleming, M. Burnett, and
S. Wiedenbeck. A debugging perspective on end-user mashup
programming. In VLHCC, pages 149–156, Sept. 2010.

[2] J. Cao, Y. Riche, S. Wiedenbeck, M. Burnett, and V. Grig-
oreanu. End-user mashup programming: Through the design
lens. In CHI, pages 1009–1018, Apr. 2010.

[3] S. Dowdy, S. Wearden, and D. Chilko. Statistics for Research,
3rd Edition. Wiley, 2004.

[4] J. Estublier, D. Leblang, A. v. d. Hoek, R. Conradi, G. Clemm,
W. Tichy, and D. Wiborg-Weber. Impact of software en-
gineering research on the practice of software configuration
management. TOSEM, 14:383–430, Oct. 2005.

[5] IBM Mashup Center. http://www.ibm.com/software/info/mashup-
center/.

[6] M. Jones and E. Churchill. Conversations in developer
communities: A preliminary analysis of the Yahoo! Pipes
community. In CCT, pages 51–60, June 2009.

[7] S. K. Kuttal, A. Sarma, A. Swearngin, and G. Rothermel.
Versioning for mashups - an exploratory study. In IS-EUD,
pages 25–41, June 2011.

[8] P. Teetor. R Cookbook. O’Reilly, first edition, 2011. ISBN:
978-0-596-80915-7.

[9] Yahoo! pipes. http://pipes.yahoo.com/pipes/.
[10] N. Zang and M. Rosson. What’s in a mashup? And why?

Studying the perceptions of web-active end users. In VLHCC,
pages 31–38, Sept. 2008.

[11] N. Zang and M. Rosson. Playing with information: How end
users think about and integrate dynamic data. In VLHCC,
pages 85–92, Sept. 2009.

72

