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Abstract—Web active end users often coalesce web infor-
mation using web mashups. Web contents, however, tend to
evolve frequently, and along with the black box nature of visual
languages this complicates the process of debugging mashups.
While debugging, end users need to locate faults within the code
and then find a way to correct them; this process requires them
to seek information related to web page content and behavior.
In this paper, using an information foraging theory lens, we
qualitatively study the debugging behaviors of 16 web-active
end users. Our results show that the stronger scents available
within mashup programming environments can improve users’
foraging success. Our results lead to a new model for debugging
activities framed in terms of information foraging theory, and to
a better understanding of ways in which end-user programming
environments can be enhanced to better support debugging.

I. INTRODUCTION

A “web-active end user” is a person who engages in
many internet activities, but lacks programming expertise [34].
For many such end users, the web has become a vital part
of day-to-day life. It has been estimated that 34.3% of the
world’s population and 78.6% of the North American pop-
ulation use the internet [20]. The web, however, is content
rich, and finding ways to effectively and efficiently access
the information it provides can be challenging. Thus, web-
active end users would often like to be able to ‘“cobble
together” various sources of data, functionality and forms of
presentation to create new services [34]. Web mashups provide
one approach to facilitate this. Web mashup environments
such as Yahoo! Pipes [33], IBM mashup maker [12], and
Deri pipes [5] allow non-programmers and programmers alike
to compose various sources of data by taking advantage of
dataflow concepts and visual interfaces. These environments
ease the task of application development by end users.

Most web mashup programming environments deal with
information that is collected at a given point in time. How-
ever, web contents change frequently [6], and this can cause
mashups to fail, as the sources of data on which those mashups
depend change. In fact, in one study of one particular mashup
domain [15], it was noted that 64.1% of a large set of mashups
had become erroneous due to the evolution of information on
which they depended. Complicating this need is the fact that
mashups tend to utilize various components in “black-box”
manners, and this adds layers of abstraction to the problem of
understanding and debugging them.

Faced with a program failure, programmers must “forage”
through code and related information to identify and correct

978-1-4799-0369-6/13/$31.00 ©2013 IEEE

the fault responsible for it. In an effort to better understand
this activity, information foraging theory has been studied
and applied in connection to the process of “foraging” for
information on the web [4], [8], [23], navigating through
programs [22], and debugging [16], [17], [18].

During a study of users focusing on their “sensemaking”
behavior while debugging, it was found that they spent up to
two-thirds of their time foraging [10]. Studies of end users
creating mashups [1] have also shown that they spend a
significant portion of their time (76.3%) in debugging. To
date, however, there has been no attempt to examine end user
foraging behavior in the context of mashup debugging.

We believe that studying end users’ foraging behavior in
the context of mashup debugging will help us better understand
the processes that end users follow in debugging, and better
support those processes. We thus conducted a study of the
behavior of 16 web-active end users, focusing on foraging
activities observed during mashup debugging activities.

Based on an analysis of the data from our study, we derive
a new model of debugging activities based on information
foraging theory (IFT). Our model considers foraging behavior
relative to both fault localization and fault correction. Our
analysis reveals various cues that end users use while foraging,
and several different strategies they use during localization and
correction, and frames these in terms of our model. In doing
this, we discover several ways in which mashup programming
environments, and we suspect, end-user programming environ-
ments generally, can be enhanced to provide better cues, and
to better support end users’ debugging strategies.

II. BACKGROUND AND RELATED WORK

A. End-user Debugging

Debugging is an integral part of programming. Studies have
shown that professional developers as well as students [7]
spend significant portions of their time debugging. In fact,
Rosson et al. [27] suggest that even professional programmers
often “debug into existence” their programs; that is, they create
their programs though a process of successive refinements.

There has been some work directed at end-user pro-
grammers engaged in debugging. Grigoreanu et al. [9] have
developed a classification framework for characterizing end-
user programmers’ debugging strategies. They identify several
debugging strategies including code inspection, following data
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flow, following control flow, testing, feedback following, seek-
ing help, following spatial layout and specification checking.
In a subsequent study Grigoreanu et al. [10] examined the
sensemaking process; that is, the process by which end users
understand bugs and their causes (based on prior work by
Priolli and Card [25]). Sensemaking consists of an information
foraging loop followed by attempts to understand the foraged
information. They found that the foraging loop dominated the
sensemaking process. As noted in Section I, Cao et al. [1]
observed that end users creating mashups spend a significant
portion of time debugging. There have been no studies, how-
ever, of the use of foraging by end users debugging mashups.

B. Information Foraging

Information foraging theory (IFT) is based on optimal for-
aging theory, developed by Pirolli and Card [24] to understand
how humans search for information. Optimal foraging theory
is rooted in the biological sciences, in studies and theories
of how animals hunt for food; this led Pirolli and Card to
find similarities between users’ information search patterns
and animals’ food foraging strategies. Human “predators”
searching for information “prey” look at various information
sources. By following “cues” in the environment they look for
“scents” i.e., indicators of the relation of information sources
to prey. They then look for prey in “patches” and sometimes
engage in “enrichment” (modifying the environment) of a
patch to increase the chances of success.

Patch models and diet models are important for IFT [24],
[30]. A patch model predicts the amount of time that a predator
will spend foraging in a patch before leaving for another patch.
A predator will spend time foraging for prey within a patch
until resources are depleted, and then will move to a new patch.
A diet model deals with the tradeoff when a predator forages
in a habitat that contains a variety of prey. If the predator’s
diet is too narrow it will spend more time searching for prey,
and if it is too broad it will hunt for unprofitable prey.

Information foraging has helped researchers understand
how users interact with the web. Navigational models have
been developed based on the foraging behaviors exhibited by
users; these help predict the navigational patterns of users
and enhance the usability of websites [4], [8], [23]. Infor-
mation foraging has also helped inform principles of design
of websites [21], [29] and user interfaces [31]. Information
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Fig. 1: Yahoo! Pipes with debugging support
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foraging theory has also been helpful in accurately predicting
the navigational behavior of programmers in general [22].
Lawrance et al. have mapped foraging theory to the debugging
domain and developed models to describe the evolving goals
of a programmer [16], [17], [18] when debugging.

III. EMPIRICAL STUDY

To investigate the information foraging behavior of end-
users we conducted a new analysis of debugging behavior from
an IFT perspective, based on results of a previous study [15] of
debugging support for mashup programmers. Additional study
details can be found in [15].

A. Participants

We emailed several departments in our university inviting
students to participate in the study, promising a $20 gratuity.
To participate, we required respondents to have experience
with at least one web language. Background in computer
science was not allowed beyond the rudimentary requirements
of their majors. We selected 16 participants of varying back-
grounds, including engineering, science, and arts. We used
stratified sampling to categorize participants based on their
experience with the web, programming languages, gender,
and Yahoo! Pipes into a Control Group and an Experimental
Group, each containing five males and three females. We
chose to include data from participants who debugged with
and without debugging support, because without debugging
support, participants spent most of their time localizing faults
and very few fixed bugs. Therefore, to study fault-fixing
behavior that involves different actions such as foraging across
multiple patches, we needed to analyze data from participants
with debugging support.

B. Environment

Our study focused on mashup programming using Ya-
hoo! Pipes [33], and on an extension to that environment
providing debugging help to end users. Figure 1 provides a
snapshot of the Yahoo! Pipes programming environment and
a sample pipe; the pane inset at upper-right is information
provided by our extension.

Yahoo! Pipes “programs” combine modules using wires
that transfer data between them. The programming environ-
ment consists of three components: the library, canvas, and
debugger. The library is located to the left and consists of
a list of modules categorized according to functionality. The
canvas is the central area in which users create pipes by placing
modules and connecting them together. The debugger helps
users see the output of specific modules as well as the final
output of the pipe.

Inputs and outputs to pipes can be HTML, RSS, JSON,
KML, and other formats. Inputs and outputs between modules
are primarily RSS feed items. Yahoo! Pipes modules provide
manipulation actions that can be executed on these RSS feed
parameters. Yahoo! Pipes also allows users to define various
datatypes such as URL, text, number, and date-time.

We added debugging support to the environment in the
form of a “To-fix list”. The To-fix list provides information on
bugs that need to be resolved and their properties. The To-fix
list is populated when the user saves or executes a pipe or



TABLE I: Details on Seeded Bugs

[ Task | Class | Bugs | Details |
Top Bl API key Missing
Yahoo! Level B2 ‘Website not found
Error Nested B3 Website not found
Top B4 Website contents changed
Silent Level BS Parameter missing
Error Nested B6 Parameter missing

clicks a “Find Error” button. The To-fix list is overlaid on the
top, right-hand side of the canvas so that users can view both
the pipe and the list of bugs. Erroneous modules are listed in
the order in which they appear on the canvas (top to bottom,
left to right).

We provide information on the context of each To-fix
item in the list; that is, we link each bug in the list to
the faulty module so that when a user clicks on a bug in
the list, that module is highlighted (marked in orange) and
parameters implicated in the bug (if any) are marked in red. We
also provide reverse functionality; that is, when an erroneous
module is selected (or hovered over) the To-fix list expands to
reveal the bug(s) in that module.

We followed Shneiderman’s guidelines [28] to design error
messages that are clear, concise, and use plain language. We
provide constructive steps to help users arrive at solutions to
bugs. We also provide a “Hint” button that can be expanded
to provide further details for resolving the problem.

C. Procedure

The study used “think-aloud” protocol [19]. Verbal dia-
logues and onscreen interactions of participants were screen
captured. The participants began by completing self efficacy
questionnaire, and then were given a 10-minutes tutorial on
Yahoo! pipes, which included information on how to create
pipes and the functionalities of modules. The Experimental
Group also received instructions on how to access our debug-
ging support extension. We asked users to create a sample pipe
to gain further familiarity with Yahoo! Pipes. We then asked
users to complete two debugging tasks. The total time required
for completion of a session per participant was approximately
80 minutes, which included an average of 50 minutes for task
completion.

D. Tasks

Participants completed two tasks, which were counterbal-
anced to compensate for possible learning effects. The tasks
were designed to understand the behavior of participants in the
case in which feedback is provided by the Yahoo environment
or absent. We also wished to examine the effect of bug
nestedness. We seeded three bugs into each of the two pipes;
for details see Table I. The participants were given the buggy
pipes and were asked to find the bugs and correct the pipes.

Our first task, related to errors for which Yahoo! Pipes
provides feedback, was “the pipe should display (1) a list of
the top 10 rated movies (from rottentomatoes.com) along with
their ratings (in descending order), (2) a poster of a selected
movie (from Flickr) and (3) a review of the selected movie”.
Our second task, related to silent errors, was “the pipe should
display (1) a list of theaters around a given area, (2) a list
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Fig. 2: Foraging Behavior during Debugging Activities

of movies in each theater along with their show times and
(3) trailers of the top 10 movies (from rottentomatoes.com)”.

E. Analysis Methodology

For the study discussed in this paper, we transcribed all
verbalizations and actions performed by our participants. We
analyzed the data using codes from Pirolli and Card [23] (IFT
in web navigation) and Lawrance et al. [18] (debugging behav-
ior among professional programming through IFT). However,
on analyzing the data we realized that we were observing
different phenomena and needed to add new codes. Through
iterative analysis of the data we created these by following the
tenets of grounded theory [3].

IV. RESULTS

Debugging involves three overall steps: (1) a user must
identify a failure in program behavior (typically in output),
(2) then they must localize the fault that causes the failure
(typically incorrect or missing code or a problem involving
program inputs) and (3) then they must identify and implement
a solution to the fault. Where end users are concerned, these
three steps are typically interleaved.

We model end-users’ debugging behavior by drawing on
IFT. We do this because debugging inherently involves for-
aging for cues to identify a fault and foraging for cues that
lead to a solution. Although users may not separate these two
debugging stages, we do so in order to better model debugging
behaviors through the IFT perspective. In this study our partic-
ipants were given information directly relevant to identifying
that a failure has occurred, so we restrict our attention to
steps 2 and 3, fault localization and fault correction.

We posit that a user’s foraging behavior during debugging
involves the following steps: (1) find cues and process them
into scents, (2) navigate through patches, (3) catch prey, and
(4) “verify” the viability of the prey. These are the basic
debugging steps proposed by Lawrance et al. [17]. Figure 2
depicts this process. In the figure, the outer box represents
the fault localization task, and the inner box represents the
fault correction task. The fault correction task itself serves as
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TABLE II: Redefining Information Foraging Terms for Debugging by End Users

fix during fault correction

IFT Definition Fault Localization Fault Fixing
Extended (Example) (Example)
Prey Potential fault during fault localization; Potential Finding Fetch Feed module that contains Finding the correct url and putting it in the Fetch

bug B2 (website doesn’t exist)

Feed module that contains B2

Information Localities in the code, documents, examples, web- Yahoo! Editor Websites, e.g. rottentomatoes.com
Patch pages and displays that may contain the prey [18]
Cues Words, links, error messages, or highlighted ob-
jects that suggest scent relative to prey.
Clear Cues that are easy for end users to understand API Key Missing error message for bug Bl Key link to the Flickr page to collect the API key
Fuzzy Cues that are difficult for users to understand “Root cause: org.xml.sax.SAXParseExcep- “Error fetching [url]. Response: Not Found (404)”
tion: root element must be well-formed”
Elusive Cues that are difficult for users to find Finding bug B3 and B6 Finding the RSS feed while correcting bug B2
Navigate Navigation by users through patches To find bug B2 the user navigated through To correct bug B2 participant navigated to various

Yahoo! Pipes editor to external website

websites to find the required url

the verification step for fault localization, as it is the ability to
correct the fault that establishes that a fault has been localized.

While debugging, users can backtrack to different naviga-
tion paths or look for different cues if they are unsuccessful in
catching the prey, and backtracking is represented in the figure
by dotted edges. We further refine this view by suggesting
that (1) users employ a set of strategies to identify cues
and navigate through patches and (2) sensemaking is a step
that users mentally perform as they create scents from cues
and navigate through the patches. These two elements in the
model occur throughout the information foraging process and
therefore are shown as crosscutting concerns in the model.

The key elements of this model, their definitions, and an
example of each for the localization and correction steps are
shown in Table II. A user is the “predator” and their “prey” is a
potential fault or a potential fault correction. A predator forages
through patches (information areas) and based on cues from the
environment picks up scents that may lead them to their prey.
Simply capturing the prey is not enough, however; the predator
must also ensure (verify) that the solution is appropriately
formatted (we call this a “diet constraint”).

We further identify different strategies that a user can
incorporate while seeking and acting on cues, navigating, and
capturing prey, which we explain in detail later. Another key
element of IFT are cues in the environment. We found that
cues differ in how well they: 1) add conceptual clarity to
error messages, 2) promote detectability, 3) connect users with
relevant debugging information, and 4) narrow the search space
for users. Based on these criteria we classified cues as clear,
fuzzy, and elusive. Clear cues contained direct links to a fault
or correction, or text that could be clearly attributed to a piece
of potentially faulty code or a potentially valid correction.
Fuzzy cues contained information adequate to lead to a par-
ticular prey, but were difficult for participants to comprehend.
Elusive cues were cues that existed in the environment, but
were particularly difficult for participants to find.

Finally, as mentioned earlier, fault localization and correc-
tion steps are intertwined in practice. In our model, the Fault
Correction (FC) step is initiated after the user catches a prey
in the Fault Localization (FL) step.

We begin our discussion of our study results by describing
the overall strategies that participants used to hunt for faults
and corrections, followed by a description of the fault local-
ization and correction steps. Note that we do not delve into
the sensemaking process in this study.
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A. Hunting Strategies

Salient versus directed goals. Even though user choices
are affected by the salience of possible actions and goals.
For example, we found that participants in the Control Group
largely seemed to have a salient goal of looking for cues in
the output of the program that could lead them to a fault.
In contrast, participants in the Experimental Group were more
directed in their search for cues for a particular fault (following
the order in which bugs were listed in the To-fix list).

First available cue versus easiest prey to catch. When
deciding which prey (bug) to hunt for, a participant could select
the first scent thought to be relevant to any prey and pursue it,
or strategize about and seek the easiest (lowest cost) prey to
pursue. We found that participants in the Control Group did
not look around for the easiest prey to catch, but rather, began
pursuing whichever prey they found the first scent of (failure)
in the output. In the Experimental Group, however, because of
the presence of the To-fix list, participants began considering
bugs in the order in which they appeared in the list.

Persistence versus obsession. While persistence is a virtue,
obsession is not a good problem solving strategy. Wickel-
gren [32] propose that when stuck on a problem, it is better to
take a step back and analyze the problem further and not focus
on the immediate action. In the Control Group, participants
pursued a single bug until they found a fault related to it and
fixed it; none switched to another bug when they were stuck. In
contrast, participants in the Experimental Group did switch to
the next bug when stuck, and then returned to the problematic
bug later. For example, participant E.P1 spent 5 minutes on
bug B4, but on realizing that she was stuck she commented:
“Ok, I will come back to that later” and moved on to bug
BS5. She returned to bug B4 after correcting bugs B5 and B6,
during which she was able to gain a better overview of the
pipe and its operation. We posit that having a list of bugs to
fix helped participants move on to the next task as well as
providing an overview of the problem space.

B. Fault Localization
1) Finding Cues

The starting point for fault localization is noting failures
(incorrect or unexpected output). As noted above, our partic-
ipants were provided with sample “correct” outputs. Partic-
ipants typically executed a pipe and compared their output
to the sample provided. These two types of output, along
with system-generated error messages, the mashup code, and



debugger output related to a module provided the initial set of
environmental cues. Here we discuss cues present only in the
unenhanced Yahoo! Pipes, and cues provided by our debugging
enhancements.

Clear Cues. In the case of the Control Group, clear cues
existed when a bug resulted in a clear Yahoo! error message
that could be directly connected to a particular module, allow-
ing participants to quickly navigate to that potentially faulty
module. For example, in the case of bug B1, the error message
included: “API Key Missing”, which caused participants to
look for modules that included this scent. When participants
navigated to the “F1ickr” module, they found that it included
the keyword “API key”; thus the “API Key Missing” message
was a strong enough scent to allow participants to reach the
faulty module. All eight participants in the Control Group were
able to follow this scent and find the faulty module.

In the case of the Experimental Group, faulty modules were
highlighted in orange, which served as clear cues that allowed
participants to easily navigate to faulty modules. Thus, for the
Experimental group, all cues were clear.

Fuzzy Cues. Participants had difficulty obtaining a strong
scent from these cues, or the cues were difficult to understand.
For example, participant C.P4 encountered the following error
message when he executed the pipe: “Error fetching [URL].
Response: OK (200). Error: Invalid XML document. Root
cause: org.xml.sax.SAXParseException. The markup in the
document preceding the root element must be well-formed”.
He could not understand what this message meant, as evident
from his comment “What is this?” and he returned back to
the editor (patch) to look for another cue.

Elusive Cues. These cues were those that were difficult for
a participant to even unearth. There were two main instances
in which cues were elusive. The first instance occurred when
a fault was nested — that is, the fault was present in a subpipe.
In these cases, Yahoo! Pipes generated an error message when
the pipe was executed. However, this message was not thrown
in the debugger window if they clicked on the module that
contained the subpipe, because errors are not propagated to
higher levels. Participant C.P3 found the error message related
to the nested module and after several attempts to identify
the source of the message commented: “Where is this [error
message] coming from?”.

The second case in which elusive cues occurred was when
the pipe failed “silently”, generating no error message. In this
case, the only way to identify the failure was by comparing
the correct output (provided by us) to the incorrect output
(generated by the pipe). In these cases, participants typically
tried to understand the functionality of the pipe one module at a
time. Without any error message, it was extremely difficult for
participants to localize these types of faults. They often picked
up incorrect scents ending in dead ends, from which they
needed to backtrack multiple times. For example, participant
C.P1 could not identify which module was incorrect after
multiple attempts and commented: “I am not sure what I am
doing, I am not lost but don’t know what I am doing”.

2) Strategies

We categorize the strategies that participants employed to
localize faults as enrichment and navigation strategies.

a) Enrichment Strategies

A primary strategy that users follow when foraging is
modifying their environment (or information patch) to optimize
affordances for their foraging activity [17]. We observed the
following enrichment strategies.

Rearranging modules. Participants created better affor-
dance in the environment by realigning or regrouping modules
so that they could better understand the connections between
them. For example, participant C.P3 arranged the modules such
that (1) all modules were aligned per their data flow path, and
(2) all wires, modules and connections were clearly visible
without scrolling.

Side-by-side comparison. Participants frequently had to
forage for cues between patches; for example, participants had
to switch between the Yahoo! Pipes editor and documentation
or tutorials. To make it easier to glance through and compare
patches, some participants (5 out of 16) rearranged the screen
so that both patches could be compared side by side.

b) Navigation Strategies

Finding negative evidence. Participants tried to maintain a
mental list of correct modules, as verified by them by checking
module output in the debugger window. This helped them
create regions of negative evidence that they could safely
ignore in their future foraging efforts.

Carving out regions. Participants leveraged the visual affor-
dances of the Yahoo! Pipe environment, which, for one of our
tasks, presented three independent data-flow paths. Participants
foraged for cues down each path separately. For example
participant C.P1 focused on the first path and commented “it
[the module at the end of one independent path] is showing
me output that means this part is working fine”, after which
he moved onto the next path.

Backtracking. When participants could identify only weak
scents, they followed these hoping they would lead to stronger
scents. When this was not the case they needed to backtrack to
the original patch (incorrect output) to look for stronger scents.
For example, participant C.P1 followed weaker scents such as
the color of the wires connecting modules (some wires were
blue while others were gray). The participant assumed that
wires that were gray contained faults and began to investigate
this hypothesis. When he realized that he had picked up a
wrong scent, he backtracked to the initial module and resumed
looking for cues.

C. Fault Correction

Participants entered the fault correction loop when they
attempted to verify that a potential fault they had uncovered
was indeed a fault, by finding a correction for it.

1) Finding Cues

Participants obtained cues about potential fixes from error
messages, code (e.g., a missing parameter or connection), and
help that was provided to them (including contextualized help
through the Yahoo! Pipe interface, external web pages, and
experiment tutorials). We categorize the cues into three groups.

Clear Cues. In the fault correction context, clear cues allow
participants to obtain a clear scent to a potential solution. For
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example, bug B1 was caused by the faulty F1ickr module
and caused the error message “API key missing” to appear. The
Flickr module contained the label ((required) “Flickr API
Key”), with the word “Key” hyperlinked to the Flickr website
from where participants could generate the API key. This clear
cue enabled most participants (seven in the Control Group and
eight in the Experimental Group) to correct this fault.

Despite this clear cue, some participants were hesitant to
navigate to a new patch (the Flickr website). For example,
when they clicked on the link from the F1ickr module and
found a new website without any links to Yahoo! or any
keywords related to the API, they became uncomfortable and
closed that page to return to the editor. Thus, participant C.P4,
while trying to learn about Flickr and API keys from the help
available through Yahoo! Pipes, opened the Flickr website four
times before learning enough to generate and use the API key
from the website. This showed that in spite of the presence
of a clear scent in a patch, participants may still have been
wary of leaving that patch. This hesitation increased if the
new patch did not resemble their current patch or had no
obvious relevance to the cue that led to the scent. Therefore,
we posit that understanding a new web page (new patch) and
its relevance to the current task by visiting that page incurs a
higher cost than remaining in a current page.

Fuzzy Cues. In the fault correction context, fuzzy cues
were difficult to use to arrive at a possible solution to a fault.
For example, even when participants had found the Fetch
Feed module to be the faulty module causing incorrect review
formats (“Error fetching [url]. Response: Not Found (404)”),
they did not know how to find the correct solution (the RSS
feed) from the error message.

The Experimental Group faced some fuzzy cues too, espe-
cially when hints did not directly lead to a solution. However,
the hints that were available usually provided cues sufficient to
allow participants to arrive at a solution by foraging through
patches. For example, participant E.P§, when attempting to
correct bug B4, found the hint (“Please look at page source
of website and provide a correct parameter value’). This
message was fuzzy, since he did not know what “page source”
meant. He searched for “How to search a page source code
in Firefox”, and hence was able to access the page source and
later correct the fault.

Elusive Cues. In the fault correction context, elusive cues
were cues to solutions that were embedded in error messages
or results, but were difficult for participants to identify. For
example, bugs B2 and B3 contained faults because of incorrect
RSS feeds and even though participants identified the correct
web page content they were unable to determine how to extract
the RSS feed from the website. This shows that although the
participants might reach a patch containing a potential fix, they
could not always consume the prey due to a diet constraint
(a specific way to extract the RSS feed). For example, when
attempting to correct bug B3, participant C.P5 was able to
obtain the list of “top 10 movies” on the Rotten Tomatoes
movie review website, but could not find the RSS feed for
them. He spent 18.5 minutes attempting to find the RSS feed
without success.

In the Experimental Group, despite most cues being made
explicit through hints, two participants still faced problems
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because of diet constraints. For example, participant E.P3
investigated 41 patches to identify the RSS feed needed to
correct bug B3.

2) Strategies

We categorize the strategies that participants used to correct
faults as enrichment, navigation, and verification strategies.

a) Enrichment Strategies

Search. When looking for information, participants often
searched for possible cues to solutions, and aggregated them
on a single page from which they foraged further. For example,
while attempting to correct bugs B2 and B3, which required
participants to identify the correct RSS feed, depending on
their expertise in RSS, participants searched (Google) for
information on them and on how to extract them from web
pages. The success of this strategy depended, however, on the
appropriateness of search terms. We found that participants
in the Control Group had trouble seeing that the incorrect
output produced by bugs B2 and B3 was due to an incorrect
RSS feed. For example, participant C.P5 searched for different
terms related to movie reviews 19 times without success. In
the Experimental Group, the hints mentioned that “To find a
similar website you need to search for RSS feeds that provide
similar contents”, and due to this, most participants in this
group began their search by studying how to use RSS feeds.
Even the one participant in the Experimental Group (E.P3) who
was unable to correct the bug knew that the solution involved
finding the correct RSS feed as evident from his comment:
“Why it [the URL he found and pasted in the parameter box]
is not RSS I am not sure...I will Google and see”.

Temporary collection. To reduce the effort involved in
moving between patches or to keep track of information,
participants in both treatment groups used external applications
such as Notepad or MS Word to keep a record of URLs that
they had already visited or text that they wanted to investigate.
For example, participant C.P7 copied the original URL from
the parameter field to Notepad before making changes to the
pipe so that she could undo his changes if necessary. Similarly,
participant C.P3 used MS Word, but in this case he copied the
tags from the module he was investigating so that he could
compare the tags in the module to those in the page source of
the website.

Side-by-side comparison. As during fault localization, par-
ticipants also arranged windows to allow side-by-side compari-
son when foraging for solutions. For example, participant C.P3
(as just explained) compared the tags in the Word document
and page source side by side.

b) Navigation Strategies

Skimming through patches. When looking for solutions,
participants first quickly skimmed through patches (web sites)
looking for cues that stood out. For example, when working on
the first task, which involved finding the top 10 movies, partic-
ipant E.P4 skimmed through the web pages and commented:
“I am looking for top 10”.

Finding negative evidence. Users often remembered
patches they had already visited and the type of information
available in them. If these patches appeared again as a result of
a new search, participants did not spend further time in them.



For example, E.P2 opened the webpage related to “Top box
office list” and closed it immediately when she realized that
she had already visited it.

Backtracking. When participants picked up an incorrect
scent and navigated to a patch in which they could not find
a solution, they backtracked to the Yahoo! Pipes editor (the
location of the fault) and began looking for cues in the output
or error messages. Participants in the Experimental Group
backtracked fewer times than those in the Control Group,
because the hints provided by the implementation allowed
them to create stronger scents. We also found that while some
participants remembered the patches they had visited, many
participants reapplied the same solution multiple times. For
example, participant E.P3 visited the same website nine times
when looking for the RSS feed. He repeated steps because
he did not know the correct solution and hoped that he could
reach the correct solution by trial and error.

c) Verification Strategies

After finding a potential correction for a fault, participants
needed to verify that the correction was appropriate. As noted
earlier, we found that participants preferred to employ less
effort and preferred to remain in the same patch. While in
the Control Group, participants needed to rerun the pipe and
compare the output (presented in a new web page) to the given
solution, participants in the Experimental Group simply used
the “Find Errors” widget and let the tool determine whether
the error had been corrected (and removed from the To-fix
list); this let them remain in their current patch.

V. DISCUSSION
A. Implications for Theory

We have extended the debugging model from the perspec-
tive of IFT as originally proposed by Lawrance et al. [17]
In our model, we specifically separate the Fault Localization
(FL) and Fault Correction (FC) steps because the information
that is foraged for during these steps differs and different
foraging strategies are used. We found that the overall steps
in debugging from the IFT perspective involved finding cues,
navigating to the correct patch, catching the prey, and verifying
the prey. The fault correction step is part of the verification
stage in fault localization; once users find a potential fault, they
need to verify that they have correctly localized the fault by
finding a solution and applying it. If the solution is incorrect,
it might be that the solution was incorrect (and users can stay
in the FC loop) or they may find that they were mistaken about
the fault and need to go back to the FL loop (Figure 2). This
process continues until users correct the fault.

We also categorized the different types of cues that are
present in a mashup environment into clear, fuzzy, and elusive
and discussed participant behavior when they face issues
related to these cues. This refinement of cue types allows
designers to understand how to strengthen cues (discussed
later) and allows researchers to focus on behaviors relative
to these cue differences.

We also articulated the different strategies that users can
employ when debugging. We began by noting the overall
hunting strategies we saw participants use. We noted that
these strategies are highly dependent on user preference and

to an extent prompted by the environment (e.g., a To-fix
list promotes a “sleep on the problem” strategy). We noted
slightly different strategies when participants foraged for cues
and navigated through patches when localizing a fault versus
when looking for solution. We believe these differences arose
because in the former case participants were more focused on
staying within the Yahoo! Pipes editor, whereas in the latter
case they needed to peruse more web content to find a way
to correct the fault. Overall, we saw that participants preferred
to stay within the patch (the editor) to the extent possible.
Finally, we found that diet constraints (where information
had to be formatted in a specific manner) affected debugging
capacities. We found that participants could easily forage to
the right web content (reviews by Rotten Tomatoes) but had a
significant difficulty finding the RSS feed for the reviews. This
is a large difference between foraging for information on the
web and foraging for information when debugging a program.
Oftentimes these diet restrictions (only RSS feed allowed in the
module) and the diet format available in web content (where
the RSS feed is located in the website) is not clear, especially
to end users.

B. Implications for Design

We now discuss ways in which our findings can help
improve interface design for black-box oriented or visual
programming environments, especially those that are geared
towards end users.

1) Strengthening scents through cue clarity: We found
participants to have the greatest difficulties when cues were
fuzzy or elusive. Of course, environment designers should
strive to use simple, clear error messages that describe the
problem and provide hints to help solve it instead of simply
providing an error code or error message with technical jargon.
This is particularly important for end users who are not well
versed in debugging techniques. In cases where it is not
possible to directly point to a solution, we found that providing
hints to the reason for a problem (e.g., wrong format of URL or
missing URL) or providing pointers to web development tools
(e.g., Firebug which allows inspection of web page elements)
helped enable participants to forage for a correct solution.
The black box nature of Yahoo! pipes further complicates the
process, because users can no longer see the underlying code
or the functionality of a module. Faults in modules that fail
silently are even more difficult to locate and correct. We posit
that visual language environments should (1) ensure that there
are no silent failures and (2) provide stack traces of failures
so users can at least locate faulty modules through keyword
searches. In the Experimental Group, when faults were visually
marked, participants quickly identified faulty modules, even
those that were nested. Similarly, when error messages had
distinct cues (e.g., “API Key missing”) participants in the
Control Group were able to easily search for these keywords
and locate the faulty module.

2) Make diet constraints explicit: The fault that proved the
most difficult to resolve involved identifying the RSS feed
for reviews. In this case, while most participants were able
to arrive to the right content, getting the content into the right
format proved difficult. This was a big problem for the Control
Group since participants even did not know that they were
supposed to look for RSS feeds from the error message.
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3) Multi-context views: We found that a majority of par-
ticipants needed to alternately switch between the editor and
other patches. Many users organized their windows to be able
to perform side by side comparisons. Environments should
thus support multi-context views, something proposed by Ko
et al. [13] for professional developers, where users can view
different dimensions of the code space (e.g., see the error
output and the code canvas at the same time) and manipulate
their placements as they prefer.

4) To-fix list: We found that having a To-fix list helped
participants focus on the faults to fix and at the same time not
get stuck on a problem. The importance of support for to-do
lists has already been researched [11], [26]. We populated the
To-fix list based on the order in which errors occurred, and
found that participants did not perform any cost analysis and
followed the list. A better option may be to populate the list
based on estimates of the difficulty of problems so that users
are guided to resolve the easier problems first.

5) Fine-grained backtracking: We found that participants
needed to backtrack and revert their changes. To help with this
process they often copied and pasted parameter values onto a
notepad so that they did not lose their initial state. Environ-
ments should facilitate this process by providing backtracking
support, a concept that has already been proposed for end
users [2], [14]. We posit that the backtracking support should
be fine-grained and (in the case of black box programming)
available at the level of modules.

VI. CONCLUSIONS

We have presented data from a study of end-user foraging
behavior when debugging mashups. To gain a better under-
standing of that behavior we modeled it using information
foraging theory. This model allows us to obtain a refined
understanding of the debugging behavior by separately focus-
ing on the localization and correction of faults. Further, we
categorized the different types of cues and strategies that users
could employ when debugging mashups. Our contributions
include: (1) extending IFT to model end-user debugging be-
havior, (2) classifying types of cues, (3) identifying debugging
strategies, and (4) discovering several implications for the
design of end-user programming environments to facilitate
end-user debugging.

Studies have shown that there are differences behaviors
of professional and end-user programs, and differences in
programming behaviors across genders. Therefore, we intend
to perform further studies to investigate the effect of these
factors on debugging behavior.
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