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Abstract—Remote pair programming encapsulates the bene-
fits of well-researched (co-located) pair programming. However,
its effectiveness is hindered by challenges including pair in-
compatibility, imbalanced roles, and inclinations to work alone.
Recent research has explored pedagogical methods to alleviate
these challenges, but none have considered the integration of
machine learning agents to facilitate remote pair programming.
Therefore, we investigated the capabilities of popular text classi-
fication algorithms on identifying three facets of pair program-
ming: dialogue acts, creativity stages, and pair programming
roles. We collected a dataset of 3,436 utterances from a lab study
of 18 pair programmers in a simulated remote environment. We
found that pair programming dialogue poses a challenge as it is
often unpremeditated and inadequately structured. Despite this,
the accuracy of our machine learning classifier was improved
by the choice of contextual dialogue features. Our results have
implications for facilitating pair programming in global software
development and online computer science education.

I. INTRODUCTION

Remote pair programming (RPP) is a practice where two
geographically separated programmers develop software
together. The two programmers regularly switch between
the roles of driver (writes the code) and navigator (reviews
the code) [1], [2]. RPP inherits the merits of co-located pair
programming, such as improving design and code quality,
reducing errors, narrowing knowledge gaps, increasing
confidence in the code, helping learn new languages and
tools, and improving communication [2]–[24].

RPP also inherits the challenges of co-located pair pro-
gramming, including pair incompatibility (e.g., differing
skill levels, conflicting personalities, and imbalanced power
dynamics) [25], [26], imbalanced roles (e.g., not sharing the
driver role) [27], and inclinations to work alone to avoid
being “slowed down” by their partner [26], [27]. Additionally
the remote nature of RPP exacerbates challenges related
to coordination, collaboration, and communication [23].
Although current research has explored various pedagogical
methods to alleviate the challenges of co-located pair
programming [28]–[31], we are the first to explore the
viability of an RPP facilitator agent.

Group facilitator agents are a subset of Group Decision
Support Systems (GDSS), which have a long history of

supporting group decision making [32]–[41]. These systems
help in different ways, such as de-emphasizing personal re-
lations, equalizing member participation, making processes
clearer, resolving conflict, and simulating the exploration of
alternative ideas [33]. An RPP facilitator agent could apply
these benefits in an RPP environment. A specific component
of such an agent is the ability to classify dialogue. Therefore,
it is necessary to investigate the potential utility of machine
learning (ML) algorithms by classifying various facets of
programmers’ conversations and analyzing the resulting
accuracies.

To guide detection and classification, ML algorithms rely
on samples of dialogue. However, no pre-existing corpus of
RPP dialogue exists, and dialogue collected for one domain is
typically not applicable for use in another [42]. Additionally,
there are stylistic differences between normal dialogue vs.
pair programming dialogue that necessitate an alternative
strategy to feature selection. Thus, the differing results and
accuracy measures must be analyzed in regard to the limited
dataset and unique feature selection strategy.

To understand the capabilities of popular text classifica-
tion algorithms and to identify the most influential features
in the domain of RPP, we formulated the following research
questions:

• RQ1: How effective are ML algorithms for classifying
dialogue acts during RPP?
To measure the ability of ML algorithms to understand
dialogue, we were interested in dialogue act classifica-
tion. Dialogue acts are used by conversational agents as
a means to identify the intent of the speaker [43]–[47].

• RQ2: How effective are ML algorithms for classifying
creativity stages during RPP?
To promote creativity among programmers, we were
interested in classifying creativity stages. Creativity is
highly desirable for an individual’s success [48]–[50]
and for solving open-ended problems [51], [52].

• RQ3: How effective are ML algorithms for classifying
RPP roles?
To promote coordination within pairs, we were inter-
ested in automatically classifying pair programming
roles. This knowledge can be used to encourage equal
participation by discouraging any participant from
solely controlling the driver role [27].978-1-7281-6901-9/20/$31.00 ©2020 IEEE



We conducted a lab study to collect a dataset of RPP
conversations. Across nine sessions, 18 participants pair pro-
grammed in a simulated remote environment, totaling 3,436
utterances (a continuous piece of speech beginning and
ending in a pause). Then, we manually labeled utterances
to train a supervised ML classifier to automatically predict
these labels.

II. BACKGROUND

A. Dialogue Acts

A dialogue act (DA) represents the function of an utterance
in dialogue (e.g., whether it is a question, request, command,
offer, etc.). DAs are a type of speech act [53], [54] adopted
from a philosophical origin and adapted to the empirical
domain of computational modeling. While it often goes
unnoticed, the subconscious mind passively processes DAs:
detecting when a DA occurs, determining the type of DA,
and formulating an appropriate response [55]–[58]. Likewise,
a computer agent can be trained to perform the same
classification procedure. In computer science, DAs are
collected to uniquely cover the breadth of actions taken in
a particular domain and are “based on pragmatic, syntactic
and semantic criteria [43].” They are used to understand the
intent of the speaker in the development of conversational
agents [43]–[47] and tutorial dialogue systems [44]. Rodriguez
et. al. [59] used DAs to study conversational speech in co-
located pair programming. We adapted our DAs from [43],
[44], [59] (refer Table I).

B. Creative Problem Solving

The Osborn-Parnes Creative Problem Solving Process is
frequently used to understand the creative process of an
individual [60]–[63]. It consists of four stages, as seen in
Table I. Information, goals, and challenges are analyzed
in the Clarify stage; programmers utilize divergent and
convergent thinking in the Idea and Develop stages; and
apply the resulting solutions in the Implement stage. The
Osborn-Parnes creativity problem solving process provides
a structured approach to solving open-ended problems, and
has been used to teach programming in computer science
education [64], [65].

C. RPP Roles

In pair programming, the prominent roles are Driver
(controls the keyboard and writes the code) and Navigator
(observes, guides the session, gives ideas, and reviews the
code) [1], [2]. Research on pair interaction has shown that
participants work together and discuss at the same strategic
level of abstraction [66]. Therefore we added the Discussing
role for when both participants conversed and neither
controlled the keyboard.

III. LAB STUDY

Supervised ML algorithms must be trained on a corpus of
domain-specific labeled data to make accurate predictions.
However, no such corpus exists for RPP, so our first step

TABLE I
LABELS USED FOR DIALOGUE ACTS, CREATIVITY STAGES AND RPP ROLES.

Dialogue Acts Definitions
ABD (Abandoned) An unfinished remark
ACK (Acknowledgement) Acceptance of the existence of something
AN (Answer No) "No" responses
APG (Apology) A regretful acknowledgment of failure
AWH (Answer What How) Answering who/what/when/where/why/how

questions
AY (Answer Yes) "Yes" responses
COR (Correction) Verbally correcting
DIR (Direct Instruction) An explicit instruction
FNON (Feedback Non-
Positive)

A non-positive response or comment

FP (Feedback Positive) A positive response or comment
IND (Indirect Instruction) Implicit or polite instruction
OTH (Other) Meaningless Words
QWH (Question
What/How)

A who/what/when/where/why/how ques-
tion

QYN (Questions Yes/No) Questions asking for a yes/no answer
ST (Statement) A declaration or remark.
UC (Uncertainty) Dialogue that indicates uncertainty

Creativity Stages Definitions
Clarify Identify the goal, gather data to understand

the goal, and formulate challenges
Idea Generate ideas to solve challenges
Develop Evaluate, strengthen, and select solutions

for best “fit.”
Implement Support implementation of the selected

solution(s).

RPP Roles Definitions
Driver Programmer writing code
Navigator Programmer reviewing code
Discussing Pairs planning together next steps

was to collect a dataset by conducting, transcribing, and
labeling user sessions.

A. Participants

Participants were selected among university students with
basic object-oriented programming experience. To avoid
potential gender bias within the data, we recruited 18
students, nine of which self-identified as men and nine
self-identified as women in their background questionnaires
based on the definition of gender identity from [67], [68].
Therefore, we only focused on these two genders.

B. Study Design

The 18 participants were divided into pairs, resulting
in nine sessions (3 man-man, 3 woman-woman, 3 man-
woman). We distributed participants into same- and mixed-
gender pairs because research has shown differences in com-
munication styles between them [23]. The two participants
of each pair were placed in separate rooms and collaborated
using TeamViewer [69] to mimic an RPP environment.
TeamViewer allowed participants to share a desktop and
communicate through video, voice, and text.

In each session, participants were introduced and given
time to practice pair programming and the think-aloud
method [70], [71]. Participants were then asked to implement
the game, Tic-Tac-Toe using the object-oriented program-
ming language, Java. In Tic-Tac-Toe, two players, X and O,



take turns marking spaces in a 3x3 grid. We selected Java
for two reasons: 1) it is the most popular programming
language among professionals and students [72] and 2) it
is used in introductory courses offered at our university.
Sessions were recorded using Morae [73], a screen capture
tool.

C. Analysis and Labeling

Recordings of each session were transcribed. Utterances
were split by pauses in speech, rather than grammatically,
to emulate the segmentation style of voice recognition
technology commonly seen in applications such as Google
Assistant [74] and Siri [75]. A total of 3,436 utterances were
collected, and each was manually labeled with corresponding
DAs, creativity stages, and RPP roles (refer Table I). When
labeling RPP roles, we relied on keyboard activity from video
captured of the participants. Two researchers independently
labeled 20% of the transcripts and reached agreement on
75.7% of DAs, 73.7% of creativity stages, and 81.0% of RPP
roles by calculating inter-rater reliability using the Jaccard
measure [76]. The remaining data was split between the two
researchers and independently labeled. The labeled dataset
of our RPP sessions is available online [77]. On average, the
transcribing and labeling (gender, timestamps, DAs, RPP
roles, creativity stages) of an individual session took ~14
hours of consistent effort (~126 hours to label all 9 studies).

IV. PREDICTING DAS, CREATIVITY STAGES, AND RPP ROLES

A. Classification Algorithm

To evaluate the effectiveness of ML within the domain of
RPP, we trained a supervised, multi-class text classification
algorithm for each RQ (source code can be found at
[78]). Multi-class classification assigns a single label to a
sample of data from a set of many labels. For our ML
algorithm, we used Support Vector Machines (SVMs) [79]
for a variety of reasons: 1) as noted in [80], text data is
well suited for SVMs, as the vector representation of text
is often high-dimensional and sparse; 2) shallow machine
learning algorithms such as SVMs require substantially less
training data for patterns to emerge than deep learning
algorithms such as neural networks [81]; 3) prior research
on categorizing developer questions [42] has shown the
viability of SVMs in a similar domain; and 4) researchers
[42], [82], [83] recommend prioritizing a simple approach
(SVMs) before moving to more advanced techniques (deep
learning) when taking preliminary steps in a research area.
Research on DA classification in phone conversations [43]
found success using Hidden Markov Models (HMMs) in
conversational dialogue, but after exploring both algorithms,
we found that SVMs consistently outperformed HMMs.

B. Features

Our classifier’s features derive from four sources: 1)
current dialogue, 2) contextual dialogue, 3) shallow features,
and 4) gender.

1) Dialogue: We vectorized both current and contextual
utterances using TF-IDF (term frequency-inverse document
frequency). Due to the high linear separability of TF-IDF
features, we used a linear SVM kernel. Any single word,
bi-gram, or tri-gram was included as a feature if it appeared
at a frequency over 0.01% of all utterances, filtering out
the less frequent ones to eliminate unnecessary noise.
We preprocessed all utterances using stop word removal,
lemmization, and stemming. We then combined similar
words (e.g. uh/uhh, ok/okay) and merged all numbers (i.e.
six, 9, forty-five) into the symbol “#.”

2) Contextual: Pair programming dialogues can be sparse,
and the meaning of dialogue is often context-dependent.
Therefore, we explored different approaches to incorporate
contextual features to accompany individual utterances.

• Approach #1 used the previous utterance, regardless of
the speaker, as a contextual feature.

• Approach #2 used the other participant’s previous
dialogue.

• Approach #3 used the speaker’s own previous dialogue.
• Approach #4 was a combination of #2 and #3.

Approach #1 was useful when a small amount of “recent
context” was needed. Approaches #2, #3, and #4 were helpful
when “distant context” (i.e., utterances from the distant
past) was necessary. In our analysis, we included a Control
Approach that contained no contextual features to test the
consistency of our results.

3) Shallow: To accompany dialogue features, we incor-
porated three shallow features identified in research on
conversational text classification [84]–[86]: the position of
the participant in the conversation, the number of words
in an utterance, and the time between the previous and
current utterance. However, several of the shallow features
proposed by this research were not used, as they required
knowledge of the future (e.g., calculating entropy over the
entire conversation, the time until the next utterance, etc.)
and therefore, cannot be applied to real-time applications,
such as facilitator agents, where predictions can only be
based on past and present information.

4) Gender: Given recent findings of gender-bias in AI [87],
it was imperative to include gender as a feature, not only to
avoid bias, but also to increase overall accuracy. Hence, we
labeled each utterance with the gender of both participants.
[23].

C. Evaluation Methodology

We used a 9-fold cross validation design, where each
fold corresponded to 1 of the 9 RPP sessions. That is, in
each validation run, 1 session was set aside as the testing
set, while the remaining 8 sessions were used for training.
Evaluation metrics were calculated 9 times (each session
was used as the testing set once) and averaged. We chose
this over randomized train-test splitting to avoid mixing
sessions between training/testing data, as this would have
disrupted our contextual features.



(a) Confusion Matrix without Weights. (b) Confusion Matrix with Balanced Class Weights.

Fig. 1. The confusion matrix for predicting DAs in our RPP sessions. (a) The accuracy of ST (statements) is high: however, almost all other labels are
incorrectly predicted as ST. (b) The accuracy of ST is lower, but other labels are more accurately predicted.

D. Evaluation Metrics

To evaluate the performance of our classifier in each
RQ, we reported the overall accuracy score, as well as
accuracy measurements for each label. We chose raw
accuracy measurements over precision and recall because
when designing facilitator agents, there is no reason to treat
false-positive and false-negative errors differently. Therefore,
accuracy is the preferred evaluation metric. We used chance
as a baseline for our accuracy measurements. Chance is the
accuracy attained by randomly picking labels (1/n were n
is the number of unique labels).

We used confusion matrices to allow for a more detailed
visualization of each classifiers’ performance. Confusion
matrices illustrate the “confusion," or the false-positives and
false-negatives that occur between labels. We were interested
in identifying what labels were misinterpreted as other labels.
The rows within the matrix correspond to each label and the
columns correspond to how the classifier interprets those
labels. Correct predictions occur on the diagonal where the
predicted and actual labels meet.

V. PREDICTION RESULTS

RQ1: Classifying Dialogue Acts
In RQ1, we investigated whether we could accurately

detect dialogue acts (DAs) within RPP sessions as a means
to understand the intent of the speaker. Our classifier was
able to classify DAs with an accuracy of 57.91%. Chance
did not provide a meaningful baseline for our accuracy
measurements in RQ1 because ST (statement) occurred
frequently (1280/3436 = 37.25%, refer Table II).

A. Statements Dominate

To further understand the performance of our classifier,
we calculated the accuracy of classifying each DA (refer Table
II, column II) and generated the accompanying confusion
matrix (refer Figure 1 (a)). The confusion matrix shows
that our classifier disproportionately predicted ST: the most

common label. To prevent this, we balanced the SVM’s class
weights so that labels’ weights were inversely proportionate
to their frequency, coercing the less common labels to
be predicted more often. Using balanced class weights
[79], the classifier was able to predict DAs with a 54.91%
accuracy: 3.00% lower than without them (refer Table II).
Although this decreased the accuracy of ST (-14.7%), it
increased the accuracy of the less common labels, such as
IND (+13.3%), DIR (+9.4%), QYN (+7.4%), QWH (+7.3%).
Nonetheless, the least frequent labels (AWH, COR, and
FNON) were still mistaken for ST almost every time. This
is because ST occurred the most frequently (37.25% of all
utterances), which allowed the classifier to identify more
patterns associated with the ST label than with any other
label. Since these patterns were not unique to ST, the
classifier could not distinguish between ST and the least
frequent labels.

Misinterpretation also occurred between two similar labels:
AY and ACK. Utterances of both labels were typically varia-
tions of “yes.” However, since AY occurred less frequently, it
was often mistaken for ACK. This did not occur in reverse
due to the discrepancy of the occurrence rates.

B. Contextual Features

To gain a better understanding of how the classifier
learned from dialogue, we analyzed the effectiveness of
encoding contextual information with and without balanced
class weights (refer Table III).

Without balanced class weights, the highest accuracy was
achieved without context, yet the improvement was minimal
(only +1.5% from Approach #4). Without class weights, the
classifier primarily focused on predicting the most frequent
labels: ST and ACK.

However, when using balanced class weights, all contex-
tual feature approaches lead to a drastic increase in accuracy,
with Approach #1 performing the best (+6.77% the from
Control Approach). In this case, “recent context” and “distant



TABLE II
ACCURACY SCORES FOR DAS WITHOUT AND WITH BALANCED CLASS WEIGHTS.

DAs Normal Accuracy Balanced Class
Weight Accuracy

Occurrences
(# Utterances)

ABD 16.6% 22.4% 205
ACK 80.8% 78.1% 621
AN 28.6% 33.3% 21

APG 47.1% 52.9% 17
AWH 2.5% 2.5% 40

AY 10.7% 16.5% 103
COR 0.0% 0.0% 27
DIR 15.1% 24.5% 159

FNON 0.0% 0.0% 37
FP 35.7% 41.7% 84

IND 15.1% 28.4% 218
OTH 52.9% 58.4% 238
QWH 28.2% 35.5% 110
QYN 16.7% 24.1% 216

ST 88.0% 73.3% 1280
UC 38.3% 43.3% 60

Avg / Total 57.9% 54.9% 3436

context” both became more important when predicting the
less common labels (e.g., question/answer style dialogues).

Since Approach #1 was the most accurate, we analyzed
results from our classifier using it and balanced class weights
for the remainder of RQ1.

C. In-Depth Feature Importance Analysis

For SVM classifiers, using a linear kernel is especially
useful for model analysis—compared to more sophisticated
kernels like polynomial or radial basis function—since the
coefficients of each feature correspond to their importance:
how definitive they are to a particular label. Analyzing
the most important features provided insight into how the
classifier distinguished labels. In the case of DA classification,
Figure 2 shows the feature importance for each label.

1) Descriptive Dialogue Features: The important features
of some DAs made sense logically. For example, the top two
features of QWH were entirely expected: “what” and “how.”
On the other hand, the least frequent labels such as FNON
contained generic words that were not definitive to the label:
“way,” “get,” and “okay.” For these poor performing labels,
the classifier did not have enough training data to identify
adequate patterns.

2) Variable Dependency on Context: Of the top 10 most
important features for each label, 75 of the total 180 (41.67%)
were contextual (green cells in Figure 2). Reliance on context
varied greatly by label: some DAs, such as ST and IND,
contained no contextual features in their top 10 features.
Others contained many; particularly DAs that relied on
context by their very nature (i.e., answer dialogues AY, AN,
AWH). This further suggested that balancing class weights
and including contextual features was necessary for the
classifier to learn non-ST labels well.

3) Domain Specific Features: One challenge of our re-
search was the classifier’s dependency on domain-specific
words. To measure the extent of this dependency, we
analyzed what percentage of the top 10 features were

Fig. 2. The top 10 most important features when classifying DAs using
contextual Approach #1. Feature types include the current utterance (gray),
previous utterance (green), and ppau: time between previous and current
turn (red).

domain-specific. Since the domain of our lab study was the
game Tic-Tac-Toe, domain-specific words included “row,”
“column,” “board,” and “game.”

Of the top 10 features for each label, 21 out of 180
(11.67%) were domain-specific words. However, they
disproportionately came from the least frequent labels
which means the dependency was even lower.

RQ2: Classifying Creativity Stages
We are interested in the detection of creativity stages within
RPP as this knowledge would enable a facilitator agent
to adjust its behavior depending on the creativity stage.
For example, if an insufficient number of ideas are being
generated with a RPP session, the agent could ask questions
that prompt divergent thinking. Our classifier was able to
predict the creativity stages of RPP dialogue with a 35.04%
accuracy score, only 10.04% greater than chance (25%).

Our confusion matrix (refer Figure 3) shows that the
Clarify and Implement stages were the most accurately
predicted (40.4% and 51.4% respectively) as compared to
the Idea (11.3%) and Develop (24.9%) stages. While this
is due in-part to the lower occurrence rate (refer Figure 3),
it illuminates the subjective nature of classifying creativity,
since these stages often overlap. This also indicates the
difficulty of classifying abstract concepts such as creativity
using bag-of-words-based techniques because they heavily
rely on keywords.

A. Contextual Features

Since creativity stages typically spanned multiple utter-
ances, contextual features proved useful. All contextual



TABLE III
COMPARES THE ACCURACY OF DIFFERENT CONTEXTUAL APPROACHES FOR DAS, CREATIVITY STAGES, AND RPP ROLES.

Contextual Feature Approaches
DAs Creativity RPP Roles

Normal
Accuracy

Balanced
Class

Weight
Accuracy

Accuracy Accuracy Without
Outlier

None (Control Approach) 57.91% 48.14% 32.35% 45.12% 45.10%
Approach #1 (Previous Dialogue Irresp. Of Participant) 56.69% 54.91% 35.04% 43.39% 42.21%

Approach #2 (Speaker’s Previous Dialogue) 56.46% 53.91% 34.15% 44.39% 42.39%
Approach #3 (Other Participant’s Previous Dialogue) 57.28% 54.50% 32.33% 44.16% 43.35%
Approach #4 (Both Participant’s Previous Dialogue) 56.41% 54.80% 34.78% 45.92% 44.66%

Fig. 3. The confusion matrix for predicting the creativity stages when
using contextual Approach Ẇhile Clarify and Implement were moderately
predictable, Idea and Develop were not. The occurrence rate of each stage
is shown in [] brackets.

Fig. 4. The top 10 most important features when classifying creativity stages
when using contextual Approach #1. Feature types include the current
utterance (gray) and the previous utterance (green).

approaches (excluding #3) lead to an increase in accuracy
(refer Table III).

Approach #1 outperformed Approach #4 (which encapsu-
lated twice the contextual information) suggesting that the
classification of creativity relied more on “recent context”
rather than “distant context.” This reliance results from the
variable length of individual creativity stages, which either
lasted across many utterances or changed after each one.
When the creativity stage changed rapidly, “recent context”
was preferred. This was also the reason why Approach #2
outperformed Approach #3: when the speaker said multiple
utterances in a row (which was often the case), their previous
dialogue was more recent than that of the other participant’s.
We used contextual Approach #1 for the remainder of RQ2
as it was the most accurate.

B. In-Depth Feature Importance Analysis

1) Few Descriptive Dialogue Features: Analysis of the
feature importance for creativity classification revealed there
were few words that directly linked to each creativity stage
(refer Figure 4). For example, “run,” the top feature for
Clarify, related to an action taken within a development
environment: running the code. In Idea, the speaker often
used phrases like “we could” and “we need” when presenting
new ideas. Develop contained “we check,” which was a
call to action on the code. Implement contained words
uttered out-loud when writing code: “equal,” “# #,” and
“else.” While the existence of descriptive keywords shows that
there were some low-level indicators for creativity detection,
the classifier’s poor performance suggests a dependency on
high-level knowledge.

2) Reliance on Context: To measure the degree to which
the classifier relies on context, we calculated the percentage
of the top 40 features that were contextual; 73 out of 160
(45.63%) were from the previous dialogue. We considered
a greater number of important features in RQ2 than in
RQ1, since creativity stages had more important features to
analyze compared to the least frequent DAs that had few
(<15 important features).

3) Domain Specific Features: Of the 40 most important
features from each label, 30 of the total 160 (18.75%)
were domain-specific words. Relative to dialogue labeling,
the classification of creativity stages was more domain-
dependent (+7.08%).

RQ3: Classifying RPP roles
In RQ3, we investigated whether RPP roles can be automat-
ically classified using dialogue alone. We rely on dialogue
(rather than requiring other input) to keep the agent non-
intrusive. Our classifier was able to predict RPP roles with
an accuracy of 45.92%, 12.59% higher than chance (33.3%).

A. Weak Navigator Role

In Figure 5, the navigator role was shown to be both
the least frequent (934/3436 = 27.18%) and least accurately
predicted role (30.6% accuracy). This is in contrast to the
accuracy of both other roles: around 51%.

B. Contextual Features

As seen in Table III, the best approach to encoding contex-
tual information was to add the previous dialogue from both



Fig. 5. The confusion matrix for predicting pair programming roles when
using contextual Approach #4. Navigator was predicted less often than it
was mistaken for Discussing. The occurrence rate of each stage is shown
in [] brackets.

Fig. 6. The 10 most important features for each label when classifying
each pair programming role when using contextual Approach #4. Feature
types include the current utterance (gray), speaker’s own previous utterance
(blue), and other participant’s previous utterance (purple). “# # #” represents
a sequence of three numbers.

participants to the original set of features (Approach #4).
Our Control Approach (no contextual features) outperformed
Approaches #1 - #3 and was only 0.80% less accurate than
Approach #4.

Session 6 was an outlier because one participant hogged
the Driver role throughout the session. Excluding this
session causes all contextual approaches to perform slightly
worse than the Control Approach (refer Table III). This
highlights the importance of capturing the breadth of pair
programming behavior when gathering training data.

We used contextual Approach #4 for the remainder of RQ3
as it was the most accurate when using all nine sessions.

C. In-Depth Feature Importance Analysis

1) Lack of Descriptive Dialogue Features: Analysis of the
feature importance for RPP role classification revealed that
no individual features stood out that were definitively unique
to each category (refer Figure 6). This lack of descriptive
keywords may be the cause of poor performance because
bag-of-words-based techniques rely heavily on them.

2) Reliance on Context: One notable trend was the
dependency on contextual information. Of the top 40
most important features for each label, 85 of the total
120 (70.83%) were contextual features. However, accuracy
measurements do not support this claim, as there was only
a +0.80% boost in performance with contextual features
and a -0.44% drop without the outlier study (refer Table

III).

3) Domain Specific Features: Of the 40 most important
features for each label, 31 of the total 120 (25.83%) were
domain-specific words.

VI. DISCUSSIONS

A. Insights

1) The Importance of Contextual Features: In all RQs, the
addition of contextual features often led to an increase in our
classifier’s accuracy. The best contextual approach for each
RQ depended on how quickly the labels changed. Labels
changed the most in RQ1, changed moderately in RQ2, and
changed the least in RQ3. Likewise, “recent context” was
preferred in RQ2, while “distant context” was preferred in
RQ3. However, in RQ1, both “recent” and “distant” context
proved equally effective. Furthermore, it was necessary
to capture the turn-taking nature of conversation in RQ1
to predict response labels: AN, AY, and AWH. Contextual
Approach #3 (the other participant’s previous dialogue)
encapsulated this dynamic and was more accurate than
Approach #2 (the speaker’s own previous dialogue).

2) The Correlation between Creativity Stages and RPP Roles:
In RQ2 and RQ3, only two labels were predicted accurately
(Clarify and Implement for RQ2; Driver and Discussing
for RQ3). The two labels in each RQ may correlate to a
clustering of high-level and low-level knowledge because
pairs were Discussing high-level topics together in the
Clarify stage, and the Driver explored code-related, low-
level topics in the Implement stage.

3) No Effect of Gender: To identify whether the same
approach to text classification can be used for both genders,
we trained models separately by gender—i.e., training a
classifier on men’s data to test against women’s data and vice-
versa. However, we did not find any significant discrepancies
between the accuracies of these gender-trained classifiers.
We conjecture that the difference between genders was
minimal because software/code-related dialogue is more
standardized than normal dialogue. However in practice, it
is unrealistic to collect gender-balanced data, especially
in computer science [88], [89], creating a challenge for
alleviating gender bias in future facilitator agents.

B. Challenges

1) Detecting RPP Roles with Dialogue: Our classifier relied
solely on dialogue to make its predictions. However, past
research [66] indicated that dialogue does not differ greatly
between roles and that participants of both roles converse
at the same level of abstraction. We also found it difficult
to categorize RPP roles solely using dialogue, so instead,
we relied on video footage of the participants to determine
who was typing, since role exchange was not always verbal.

2) Dependence on Domain-Specific Words: A classifier
trained across multiple domains cannot rely on domain-
specific knowledge, and instead, must identify domain-
independent patterns, creating a threat to external validity.



Our sessions share common verbiage unique to the game
of Tic-Tac-Toe such as “column,” “row,” “player,” and
“mark.” The extent to which a classifier relies on these
domain-specific words to make its predictions determines
its transferability: how much information from one domain
can be used to predict in another. In our study, the rate of
domain-specific words within the top features were: DAs
11.67%, creativity stages 18.75%, and RPP roles 25.83%.
Hence, while we could train a classifier to detect DAs and
creativity stages across different domains, it would be more
difficult to do so for RPP roles.

3) Nuances in Dialogue: Intent classification is especially
difficult in RPP conversations, as sentences were often not
well thought-out, inadequately structured, and contained
repeated words or phrases (e.g., woman participant WP9
said, “For that part this is part this one and...”; WP11
said, “the other thing the only like other way is maybe
like have like...”; and man participant MP18 said, “if all
of them, if all of them are, yeah if all of them are...”). This
also may have contributed to the underperformance of
HMMs (DAs: 39.84%, Creativity: 34.10%, and RPP Roles:
39.04%.). HMMs model linear transitions between discrete
states and have proven effective in structured turn-taking
phone conversations [43], but were less so in the sporadic
conversational style of RPP. Furthermore, in current state-
of-the-art speech recognition technology and research on
automated transcription (e.g., [90]–[95]), voice recognition
errors vary largely between individuals due to different
speech patterns, accents, and volumes [96], increasing the
challenge of identifying intent within RPP conversations.
However, these challenges are not the focus of this paper.

4) The Need for a Large Corpus of Data for Sophisticated
ML algorithms: Sophisticated ML algorithms (e.g., deep
neural networks) are capable of achieving higher accuracy,
but require a large corpus of training data before they
eclipse the accuracy of shallow algorithms (e.g., SVMs).
Deep-learning algorithms (e.g., RNN and CNN) are being
used for DA classification of large corpus of switch board
data [97]–[102]. However, our dataset consisted of only
3,436 utterances, so we could not take advantage of such
algorithms, creating a threat to internal validity. We defer the
exploration of deep learning algorithms to future research.

C. Implications

1) Domain and Language Specific Features: To increase
the accuracy of classifiers used for software engineering
applications, information regarding the domain (e.g., Tic-
Tac-Toe, aviation management software, hospital manage-
ment systems), programming language (e.g., Java, C, C++,
SQL), and language type (e.g., object-oriented, declarative,
machine and assembly languages) should be included as a
feature to allow classifiers to interpret text features differently
depending on the domain.

2) Voice Intonation and Facial Features: Our study utilized
only dialogue features and did not consider other types of
input such as voice intonation or facial expressions to aid

the detection of emotions such as boredom, excitement, or
confusion, as well as the power dynamics between pairs.
This is especially important in analyzing and eliminating
gender bias in RPP, since researchers found differences in
communication styles (e.g., women use more non-verbal
cues than men [23]). Therefore, our classifier’s accuracy
could be increased by including features that can detect
emotion.

3) Keyboard Input as a Feature: Since we relied on video
footage of participants’ keyboards to identify RPP roles, the
addition of keyboard input as a feature has the potential to
improve the accuracy of RPP role classification. Additionally,
the correlation between RPP roles and creativity stages
suggests keyboard input might also improve the accuracy
of creativity stage classification. Either RPP roles or direct
keyboard input could be used as features for creativity stage
classification.

4) Supporting Creativity in Education: The ability to
accurately detect programmers’ creativity stages could be
used to facilitate learning in interactive education platforms
(e.g., Codecademy [103]) and intelligent tutoring systems
(e.g., [28], [104]). A facilitator agent could promote effective
creative strategies by identifying which creativity stages
novice programmers should focus on. Our creativity stage
classifier could detect Clarify and Implement more accu-
rately than Idea and Develop. Therefore, for educational
platforms, creative facilitator agents could be designed to
support two stages, but more research is required to increase
the accuracy of classifying the Idea and Develop stages.

VII. RELATED WORK

Within the discipline of software development, Wood et
al. [42] envisioned the creation of virtual assistants like
Siri, Cortana, and Google Assistant to aid programmers.
They conducted a Wizard of Oz study where developers
asked an assistant “Wizard” various questions. They then
annotated speech acts—“spoken or written actions meant
to accomplish a task [105]”—and later developed a classifier
to detect them. Our research differs, as we envision a RPP
facilitator agent which can classify remote pair programmers’
conversations for DAs, creativity stages, and RPP roles.

VIII. CONCLUSIONS

Our study is the first to contribute to literature on RPP
facilitator agents. We make the following contributions: (1)
Making our labeled dataset of RPP conversations available
for reproducibility by researchers and practitioners. (2)
Providing insights on the feature selection, algorithms, and
challenges when developing an ML classifier for detecting
three facets of RPP dialogue: dialogue acts, creativity stages,
and RPP roles. (3) Laying the foundation for the development
of a facilitator agent. With this foundational work, we aim
to empower programmers separated geographically.
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