

PFIS-­V: Modeling Foraging Behavior in the
Presence of Variants

Sruti Srinivasa Ragavan1, Bhargav Pandya1, David Piorkowski1, 2, Charles Hill1,
Sandeep Kaur Kuttal3, Anita Sarma1, Margaret Burnett1

1Oregon State University
Corvallis, OR, USA

2IBM Research
Yorktown Heights, NY, USA

3University of Tulsa
Tulsa, OK, USA

{srinivas, pandyab, hillc, anita.sarma,
burnett}@oregonstate.edu

david.piorkowski@ibm.com sandeep-kuttal@utulsa.edu

ABSTRACT
Foraging among similar variants of the same artifact is a
common activity, but computational models of Information
Foraging Theory (IFT) have not been developed to take
such variants into account. Without being able to computa-
tionally predict people’s foraging behavior with variants,
our ability to harness the theory in practical ways—such as
building and systematically assessing tools for people who
forage different variants of an artifact—is limited. There-
fore, in this paper, we introduce a new predictive model,
PFIS-V, that builds upon PFIS3, the most recent of the
PFIS family of modeling IFT in programming situations.
Our empirical results show that PFIS-V is up to 25% more
accurate than PFIS3 in predicting where a forager will nav-
igate in a variationed information space.

Author Keywords
Variants; Information Foraging Theory.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous

INTRODUCTION
When engaged in computer-supported creative tasks—such
as graphic design, creating a presentation, exploratory pro-
gramming, or writing this CHI paper—people often need to
build upon and compare multiple ideas, fit them together
and save the intermediate steps [1]. One effect of such ex-
ploration can be the creation of many, many variants of the
same artifact (e.g., image with different colors) [2, 12, 45].

People need to find (or re-find) and compare these earlier
variants of the artifact, especially when things go wrong,
they reach a dead-end, or they want to opportunistically
harvest specific bits and pieces of prior work. For example,
working in such ways with multiple variants is especially

common in exploratory programming, where program-
mers—novices and experts—experimentally blend writing
new code with reusing bits and pieces of code from differ-
ent resources, including earlier variants [1, 2, 18, 27, 47].

Finding one’s way to the right information in a large infor-
mation space is difficult—even without the presence of
multiple variants. For example, one study reported pro-
grammers spending about 35% of their time on just the me-
chanics of navigating a single variant of source code [19],
and another study reported that, when other aspects of in-
formation seeking were also taken into account, program-
mers spent an average of 50% of their time navigating [34].

Information Foraging Theory (IFT) [36] helps explain how
people spend their time in their information seeking activi-
ties. IFT proposes that a person seeking information follows
the “information scent” perceived from the signposts
(“cues”) to locations of potentially useful information
(patches), similar to the way predatory animals in the wild
follow the scent to their prey. Since foraging in the pres-
ence of multiple variants adds a need for the forager to
cognitively discern differences among very similar cues and
patches, it stands to reason that the cost to foragers in a var-
iationed information space will be higher than when patches
and cues are more unique and distinctive.

Indeed, a recent study observed that foragers in a varia-
tioned information space adopted additional foraging mech-
anisms and strategies in the presence of multiple, similar
variants [41]. These initial observations suggest the need
for a deeper understanding of how well IFT can explain
people’s behavior in such a foraging situation, and how we
might then harness IFT to build tools to support variations
foraging. Computational models allow us to do this: they
help researchers empirically validate concrete hypotheses
derived from study observations and guide tool-building.

Toward this end, we present a new computational model of
foraging that is able to account for multiple similar variants
in an information space. Our new model, called PFIS-V
(PFIS for Variation Space), builds on the PFIS (Program-
mer Flow by Information Scent) family of predictive IFT
models for programming situations [32]. We chose pro-
gramming as our domain because, as mentioned earlier,
variations are a commonly-occurring phenomenon in this
already information-seeking-intensive domain; however,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Ab-
stracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org. 	

CHI 2017, May 06-11, 2017, Denver, CO, USA 	

© 2017 ACM. ISBN 978-1-4503-4655-9/17/05...$15.00 	

DOI: http://dx.doi.org/10.1145/3025453.3025818

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6232

the theoretical foundations should apply to other domains
(e.g., web design, text documents, slide decks, etc.) as well.

We begin by modeling the properties of variants—such as
similarities and differences—that users attended to during
their variations foraging, leading us to our first RQ:

RQ1: How can we account for variants in computationally
modeling programmers’ foraging behavior?

We then empirically investigate the effectiveness of our
computational model using the data collected from a prior
study on variations foraging [41] to answer:
RQ2: How effective is our new computational model?

BACKGROUND AND RELATED WORK

Variants
Working with variants is a common phenomenon in explor-
atory, creative tasks. Researchers have built several tools to
support variants in both non-programming (such as graphic
design [11, 12, 45], personal information management [16])
as well as programming domains (e.g., web design [18, 20],
professional software development [6], end-user program-
ming [22, 13]). However, none of these tools (except [13])
support variations in exploratory programming.

Prior work on programmers reusing code from other vari-
ants during exploratory programming defined a program
variant as a “syntactically valid program that occurs to-
gether with other similar, related programs” [41]. For ex-
ample, if a programmer took the source code of a website
and modified the background color of the home page, the
resulting new program is a variant of the original program.
The results, grounded in Information Foraging Theory
(IFT), explain programmers’ foraging behavior while seek-
ing the right variant (and the relevant code snippets within)
to reuse. We build on this prior work and use IFT to com-
putationally model programmers’ variations foraging.

Information Foraging Theory (IFT)
Information Foraging Theory is a theory of how people
engaged in information-intensive tasks seek information.
IFT is based on optimal foraging theory that explains how
predators hunt for their prey in the wild [36]. The theory
was first developed to explain people’s information-seeking
behavior in large document collections. Since then, it has
been applied to explain user behavior in several other do-
mains like web browsing and programming.

IFT borrows constructs from the optimal foraging theory: a
person seeking information in an information environment
(e.g., programmer searching for a code snippet in an IDE) is
similar to a predator seeking prey in a foraging ground
(predator = person, prey = information, foraging ground =
information environment). The prey might be present in
locations in the information environment called patches
(e.g., files, classes or methods) and the patches might be
connected to each other via links (e.g., IDE shortcut to go
from one method to another). The network of patches and
links together is called the topology.

Associated with the links is information that acts as cues for
the predator: a cue tells the predator what might be at the
other end of the link, thereby, becoming signposts to their
prey. For example, the words in a method name act as cues
about what the method does. The predator uses the scent
emanating from these cues to reach the information they
seek, just like animals sniff their way to their prey.

One of the ways in which IFT has been applied is to com-
putationally model user behavior during different infor-
mation-seeking tasks [3, 4, 10, 23, 37, 38, 39]; such models
have informed the design of tools and interfaces for people
engaged in information-intensive tasks. For example, the
WUFIS [3] model uses the structure and content of web
sites to predict which page a user would navigate to; this in
turn helped lay the foundations for layout and information
design in websites [43] and web-search engines [28].

Recently, IFT has been applied to programming tasks such
as requirements tracing, debugging, maintenance and IDE
design [9, 21, 23, 25, 29, 34, 35, 40, 31]. Researchers have
built computational models to predict, and thus explain
programmers’ navigation in source code. The first such
model, namely PFIS [24], used source code and task de-
scriptions to predict which classes a programmer, working
on a given task, would navigate to. PFIS was then extended
to PFIS2 (and later refined to PFIS3 [32]) to model “reac-
tive IFT” [26], that accounted for the evolving foraging
goals of programmers as they perform their task. Piorkow-
ski et al. used these models to build a system that recom-
mends parts of code relevant to the current foraging goals
(and sub-goals) [33]. However, the PFIS family so far has
only accounted for a single program variant and is insuffi-
cient to explain foraging in a variationed information space.

Predicting programmer navigations
Navigating source code is nontrivial [19]: one of the ways
researchers have attempted to help programmers navigate
source code is by recommending source-code locations that
the programmer might want to navigate next. To make their
recommendations, these tools use different heuristics. Sev-
eral tools use the historical activity of the programmer (e.g.,
past visited locations) to make a prediction [8, 14, 17, 30]
while others use textual similarity (to bug report or current
location), structure of the program (such as method invoca-
tions) [7, 15, 42, 44] or a combination of these [33]. How-
ever, none of these tools consider the case of a programmer
navigating through multiple program variants.

MODELING PROGRAMMER NAVIGATIONS
Computational models serve two purposes: (i) they provide
a way to validate hypotheses about programmers’ foraging
behavior, and (ii) the models can be directly used for theo-
ry-based tool building. We build on an existing family of
predictive models, namely PFIS (Programmer Flow by In-
formation Scent) [24], that model programmer’s foraging in
a single program variant. We chose PFIS because it is
grounded in IFT, which is the underlying theory for several
computational models of user behavior in several domains

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6233

[3, 10, 23], including programming activities like debug-
ging [25] and maintenance [24].

PFIS3: Before we describe PFIS3 (the most recent model
in the PFIS family), note that predictive models contain two
parts: (i) the data model representing the program—its
methods, words and links, and (ii) the algorithm that uses
the data model to predict programmers’ navigations in the
program. In the rest of this paper, we use following termi-
nology: predictive model refers to any model that predicts
programmer navigations; data model refers to the underly-
ing representation of the program; and the algorithm is re-
sponsible for making predictions using the data model (Pre-
dictive Model = Data Model + Algorithm).

PFIS3’s data model operationalizes the topology of the in-
formation space (network of patches and links) as a graph.
The information patches (here, methods) are represented as
nodes (called patch nodes) while links between patches are
represented by edges. A link between two patches exists
when a programmer can go from one patch to another in a
single-step IDE action (e.g., following an IDE shortcut to
go to method definitions, scrolling to adjacent methods).
The words in patches are modeled as nodes (called word
nodes), while edges between patch nodes and word nodes
indicate that the patch contains the word.

Figure 1 shows a program (left) represented in the data
model (right). For each method (patch) in the program (e.g.,
sum, count, average), there is a patch node (blue
ellipse) in the graph, and for every word in the program
except reserved keywords (e.g., numbers, words in meth-
od names), the graph contains a word node (red square).

The method average calls methods sum and count, and
a programmer can navigate between these methods using
IDE shortcuts; therefore, these patches are linked via an
invocation edge (labeled “inv”). Similarly, a programmer

can navigate from the method count to the methods sum
and average by scrolling; therefore, these patches are
linked via adjacency edges (labeled “adj”). Thus the links in
the graph model the environment’s navigation affordances.

Let us look at the method average: the patch contains
words like average (its name), numbers (parameter), and its
content (calls to sum, count); these words in the patch
serve as cues for a programmer foraging in this patch. The
dashed edge (---) between the patch node average and the
word node numbers indicates that the patch contains the
word. Since the word numbers is also found in patches
sum and count, the numbers word node is also connected
to sum and average patch nodes via dashed edges (---).

The PFIS3 algorithm uses the data model to predict pro-
grammers’ between-patch navigations. It does so by com-
puting the “scent” of links from the programmer’s current
patch to all other patches the programmer has seen thus far.
First, the algorithm activates some patches with initial
weights based on the programmer’s current location. The
algorithm then spreads this activation to other patches based
on source-code cues (words), the programmer’s past navi-
gation history, and the topology of the information space.
The patches are then ranked by their resultant weights, and
the algorithm returns the patch with the lowest rank as its
prediction for the programmer’s next navigation [33].

Let us look at an example (based on Figure 1) of the algo-
rithm’s working. Consider a programmer currently in meth-
od count. Although both sum and average are adja-
cent patches to count, the PFIS3 algorithm spreads higher
activation to average than sum. This is because (a) there
is an additional invocation link between count and av-
erage, and (b) the patch average has more words (num-
bers, count) in common with count, than sum (only
numbers). Therefore, the algorithm predicts a navigation
from count to average. Note that PFIS3 also takes pro-

Figure 1. The PFIS3 data model operationalizes IFT: patches (methods) and words in source code are represented as nodes

 while links between patches and “patch contain word” relationships are represented by edges.

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6234

grammers’ navigation history into account for making pre-
dictions, which we ignore here for illustration purposes.

While PFIS3 or other IFT models predict user behavior in a
single variant of an artifact, none of them consider multiple
variants. This leads us to our first research question:

RQ 1: How can we account for variants in computationally
modeling programmers’ foraging behavior?

We answer RQ1 in two stages: RQ 1a addresses representa-
tion of variants in data models, and RQ 1b focuses on algo-
rithms that account for variants while making predictions.

RQ 1a: How do we represent variants to computationally
model foraging in the presence of variants?

The PFIS3 data model can represent a single variant of a
program. We extend this data model to represent multiple
variants in four different ways, each making different as-
sumptions about programmers’ foraging among variants.

Variant-­unaware data model
The variant-­unaware data model is very similar to the
PFIS3 data model: it represents patches (along with associ-
ated cues and links) from multiple variants in the same way
PFIS3 represents a single variant of a program (Recall that
a variant is an entire copy of a program). Such a data model
is unaware of the properties of variants (such as the similar-
ities and differences between variants), which programmers
are aware of, and use in their foraging [41].

Figure 2(a) shows the variant-­unaware representation of a
program with four variants. We represent methods in the
program using letters A, P, Q, R and S: nodes represent
patches and edges represent links between them. A pro-

grammer starts with the first variant and makes changes to
method R (whereby, 𝑅" = 𝑅 + ∆𝑅) to create a new variant
(and subsequently creates other variants too). While a pro-
grammer may be aware that patches R, R', and R" (or all of
P) are similar, related patches across different variants, the
variant-­unaware model is unaware of these properties.

Since this data model captures the navigation affordances
currently available in IDEs (and our study environment
[41]), we use it as the baseline for our comparisons.

Variant-­aware data model
One property of variants is that they have similar patches:
prior results showed that programmers capitalized on this
property while foraging [41]. We modeled this property by
introducing “variant-of” links between similar patches
across variants, thereby making it “variant-aware”. We de-
fine two patches (in different variants) to be similar, if they
have the same fully-qualified names (folder, file, class and
method names) relative to the variant that contains them.

See the variant-aware data model in Figure 2(b): the “vari-
ant-of” links (dotted lines) between all patches P, or R, R',
and R" indicate similar patches across different variants.

Variant and equivalence aware data models
Often, a small change in one variant (such as font color and
size) might result in a new variant of a program. This leads
to a lot of not just similar, but identical (exactly the same)
patches among temporally close variants [41]. In a pro-
gramming context, this means that methods can have the
same fully-qualified names (folder, file, class and method
names), as well as exactly the same content (parameter
names, definition and words) across different variants.

Figure 2. In order to introduce variant-awareness, we added “variant-of” edges (dotted lines) between similar patches in different
variants (b). Further, we collapsed equivalent patches based on text-based similarity (c), or text-and-topology-based similarity (d).

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6235

From a foraging perspective, this means that the cues and
the scent from these identical patches are also the same;
hence, it does not matter which of these identical patches a
programmer forages in. Since these patches are all equiva-
lent to the programmer, we call them “equivalent” patches.

From a modeling perspective too, it does not matter which
one of these equivalent patches a predictive algorithm pre-
dicts. Therefore, we collapse multiple equivalent patches
into one super-patch to form a variant-and-equivalence-
aware data model. We do this in two ways:

In text-­based equivalence (denoted by suffix t), we call two
patches equivalent if their contents are identical, i.e., they
have exactly the same text. From a forager’s perspective,
this models the case where a programmer does not differen-
tiate between patches (and treats them as equivalent) as
long as they have the same content.

However, programmers might differentiate patches across
variants even though they might have the same content!
Consider the following scenario: two variants of a program
contain identical patches P. In the first variant, there is a
patch A that is right above (adjacent) to P, while there is no
adjacent patch A in the second variant. In some situations, a
programmer foraging in the two variants might perceive the
two patches as different. In fact, prior studies on program-
mer navigation have shown that source-code structure is an
important factor in modeling programmer navigations [32].
This leads us to an alternate definition for equivalence:

In text-­and-­topology-­based equivalence (denoted by suffix
t,t), two patches are equivalent if: (a) they have exactly the
same content, and (b) their neighbors (patches linked by
invocation and adjacency links) in the topology are similar
(not necessarily identical).

See Figure 2 (b): patch P has links to patch A in the first
three variants, but not in the last variant. The variant-and-
equivalence-aware(t) only considers text similarity; there-
fore, patch P from all variants are collapsed into one single
patch in Figure 2(c). On the other hand, the variant-and-
equivalence-aware(t,t) considers similarities in both text as
well as topology: therefore, it collapses the patch P in the
first three variants (having same neighbors A and Q) alone
into one node, while excluding the patch P in the last vari-
ant (since it has no neighbor A).

Notice that in both cases the variant-and-equivalence-aware
data models preserve the notion of similar patches (variant
awareness), denoted by the “variant-of” links between simi-
lar patches in both Figure 2(c) and (d).

One concluding remark about the two variant-­and-­
equivalence-­aware data models is that they represent varia-
tions to an artifact by only capturing the differences be-
tween the variants. This is unlike the variant-unaware or
variant-aware data models which also capture redundant,
similar patches. For example, in Figure 2, both variant-
unaware and variant-aware data models retains four copies
of patch Q, even though Q has not changed across variants

(there is no Q'), whereas the two variant-and-equivalence-
aware representations contain only one patch Q. This result
can be directly applied in practical cases where variants
need to represented or stored.

Having thus addressed the data modeling problem for pro-
gram variants (RQ 1a), we next focus on the predictive al-
gorithm (RQ 1b). Before we proceed to develop a new al-
gorithm to predict programmer navigations in a variationed
information space, we first modify PFIS3 to predict pro-
grammer navigations using the above four data models.

PFIS3 models foraging in a single program variant where a
patch node in the data model represents a single patch in the
program; therefore, the PFIS3 algorithm does not distin-
guish between patches and patch nodes. However, the
PFIS3 approach fails for variant-­and-­equivalence-­aware
data models where one patch node might represent many
equivalent (collapsed) patches. Therefore, we tweaked
PFIS3 to distinguish between patches and patch nodes, and
predict patch nodes in the graph instead of patches in the
program. With this tweak, PFIS3 can predict programmer
navigations in four configurations using the four data mod-
els; these serve as our baseline for comparisons.

Although PFIS3 can now predict using data models repre-
senting variants, its algorithm does not consider the proper-
ties of variants that programmers capitalize on, during their
foraging [41]. Therefore, we extend the PFIS3 algorithm to
account for these properties of variants in order to accurate-
ly model programmer behavior.

RQ 1b-How can we predict programmer navigation in a
variationed information space?

PFIS3 models programmers’ navigations to only patches
that s/he has already visited (or seen): all other navigations
are considered “unknown” because the programmer has
never seen them. However, in the presence of variants, even
though a programmer has not seen a particular patch, s/he
might know about it if s/he has already seen a similar patch
in a different variant. We therefore extend PFIS3 to PFIS-V
(PFIS for Variants) to model this phenomenon that is
unique to variations foraging.

Consider a programmer – let us call her Alice – foraging in
a method count in variant V1 of a program. She then nav-
igates to a different variant V2 and again sees a method
count in V2. Even before Alice makes a decision to navi-
gate to, or forage in the method count in V2, she already
has some prior knowledge about the method; therefore, the
method count is not entirely unknown to Alice. IFT as-
sumes that an information forager makes rational decisions
[37]; therefore, when Alice does decide to navigate to the
method count in variant V2, it stands to reason that she
has one of the two expectations: the method count in the
two variants are identical, or, they are both different (de-
pending on her foraging goal).

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6236

Indeed, prior results showed that programmers looked for
similarities and differences (based on their foraging goals)
while foraging among similar patches in different variants
[41]. From the perspective of modeling such programmer’s
behavior, there is no way of knowing what difference the
programmer expects to find (between similar patches in
different variants); hence the cues and scents for such a
navigation cannot be modeled until the programmer actual-
ly navigates to the patch. Therefore, PFIS-V assumes and
models the case that the programmer expects the two simi-
lar patches to be identical, as shown in Figure 3.

Recall that PFIS-V (and PFIS3) can predict programmer
navigations in four configurations (using the four data mod-
els): we refer to these configurations using the notation
“PFIS-V / data model”, e.g., PFIS-V/variant-­unaware.

EVALUATION

Methodology
We evaluated PFIS-V using the data containing over 650
click-based navigations [32], collected in our prior study
with seven novice programmers [41]. Participants in the
study made changes to a JavaScript-based game called Hex-
tris, working in Cloud9, a web-based IDE, on a program-

ming task that lasted 50 minutes. Participants’ IDE actions
as well as their screen interactions were recorded using
Cryolite, a Cloud9 logger [48] and screen capture software.

The participants were asked to make the following changes
to the latest version of the game (Figure 4(a)): (i) move the
score indicator above the hexagon, (ii) move the score mul-
tiplier above the hexagon, and (iii) change the score color;
all “like it was before” (Figure 4 (b)). The phrase “like it
was before” was used in order to avoid explicitly mention-
ing that the solutions to the tasks were present in earlier
variants. There were over 700 variants.

PFIS-­V evaluation
We evaluated PFIS-V by predicting the between-patch nav-
igations (navigations between methods)—within or across
variants—that were made by participants during the pro-
gramming task in the above-said study. We then analyzed
the accuracy of these predictions, thus answering RQ2:

RQ 2: How effective is our new computational model,
namely PFIS-V?

We answered this question by considering two aspects:

Unknown rates
Recall that models like PFIS3 and PFIS-V cannot predict
programmer navigations in all cases; in some cases, they
return “Unknown”. The unknown rate is the percentage of
navigations for which a model returns “Unknown”. For
example, an unknown rate of 60% means that the model
failed to predict 60% of all programmer navigations.

Figure 5(b) compares the unknown rates of PFIS-V (blue)
and PFIS3 (yellow): PFIS-V had lower unknown rates than
PFIS3 for all seven participants (Note that lower is better).
In other words, in the presence of variations, PFIS-V could
predict (and hence model) programmer navigations in cases
where PFIS3 failed to make a prediction. On an average,
PFIS-V predicted 9.25% more navigations than PFIS3; for
individual participants this number was as high as 20.19%
(P07). Note that while the unknown rate indicates how of-
ten a model fails to make a prediction, it does not measure
the accuracy of the predictions.

Hit rates
Hit rate, on the other hand, can measure the accuracy of
predictions. Recall that the PFIS family returns the rank at

Definitions:

● Patch set 𝑃: set of all patches in the topology that the pro-­
grammer has seen so far.

● Word set 𝑊: set of all words in all patches in	
 𝑃.
● Graph 𝐺 = (𝑁, ∪ 𝑁.,𝐸, ∪ 𝐸.	
), where,
○ 𝑁, : set of nodes representing patches in 𝑃 (a patch node
can represent a single non-­collapsed patch or multiple
equivalent patches when collapsed).

○ 𝑁. : set of nodes representing the words in 𝑊.
○ 𝐸,: set of edges between two patch nodes, when the
patches are linked by an adjacency, invocation or a “vari-­
ant-­of” link.

○ 𝐸. : set of edges between a word node and a patch node,
where the patch contains the word.

● Navigation history 𝐻: sequence of patches to which the pro-­
grammer has navigated so far.

Steps to predict the (k+1)th patch in H:

● If programmer has not seen exact patch earlier:
If programmer has seen a similar patch 𝑃3 : assume con-­
tent of (𝐾 + 1)67 patch is exactly similar to 𝑃3 .
 Else, return “unknown”

● Set activation for each node in 𝐺 → 0.
● For the 𝑘67patch 𝑝 in 𝐻 and |𝐻| − 𝛿 < 𝑘,

- Increment activation for patch node for 𝑝 by 0.9|𝐻| − 𝑘.
● Spread activation (∝= 0.85, edge weights=1) such that only
word nodes receive activation.

● Spread activation (∝= 0.85, edge weights=1) such that only
patch nodes receive activation.

● Rank the patch nodes in the decreasing order of activation.
- If 𝑡 patch nodes are tied at rank 𝑟, assign 𝑟𝑎𝑛𝑘 = [𝑟 + 6JK

L
]

to all 𝑡 patch nodes.
● Return the rank for the node representing the (𝑘 + 1)67 patch.

Figure 3. The PFIS-V’s algorithm.
(Lines in blue indicate the differences from PFIS3)

Figure 4. Participants were asked to move the score

and multiplier above the hexagon, “like it was before”
(Left: Before, Right: After)

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6237

which the algorithm predicts the navigation (to be) made by
a programmer (as shown in Figure 3). 𝐻𝑖𝑡	
 𝑟𝑎𝑡𝑒	
 (𝑁 = 𝑘)
read as “hit rate with threshold k”, refers to the percentage
of navigations that a model predicts at 𝑟𝑎𝑛𝑘 ≤ 𝑘. In other
words, a “hit rate (N=10) of 60%” means that for 60% of
the navigations, the actual navigation made by the pro-
grammer was in the top 10 predictions made by the model.

In order to compare the accuracy of predictions made by
two models, we compare their hit rates. Following the work
of Piorkowski et al. on PFIS3 [32, 33], we generally use hit
rate (N=10), unless specified otherwise. See Figure 5(a): the
graph is a plot of average hit rates (across all participants)
yielded by the different configurations of PFIS3 and PFIS-
V, for different thresholds. Irrespective of the underlying
data model (line colors), we see that on an average, PFIS-V
(solid lines) had higher average hit rates than PFIS3 (dot-
ted lines), suggesting that programmers did capitalize on
their knowledge of prior variants, as modeled by PFIS-V.

Although we found that the increase in hit rates when aver-
aged across all participants was modest (about 10%), we
saw a much higher increase in accuracy in predictions from
PFIS3 to PFIS-V for individual participants. In the case of
participant P07, PFIS-V had an increase of 25% accuracy as
compared to PFIS3 (PFIS-V modeled with an accuracy of
65%, while PFIS3 attained a 40% accuracy). Further, PFIS-
V could model individual participants’ navigations with an
accuracy as high as 83% (participant P01) [46]. Note that
our results are based on only one study in a specific envi-
ronment; further studies are needed to generalize these re-
sults. We now unpack the results of our evaluation further.

PFIS-­V configurations
Recall that PFIS-V can predict in four different configura-
tions, using four different data models. Each of the four
data models make different assumptions about the pro-
grammers’ mental model of the variationed information

space and their foraging behavior. To empirically validate
our assumptions about programmers’ foraging behavior, we
further investigated the four PFIS-V configurations.

In Figure 5(a), the different colored solid lines show the
average accuracy (hit rates) of PFIS-V for different data
model configurations. Focusing only on PFIS-V, we see
that the variant-­aware (yellow) configuration yielded higher
hit rates than the variant-­unaware (orange) one, while the
variant-­and-­equivalence-­aware configurations (overlapping
green and brown solid lines) yielded even higher accuracy
than the previous models. Thus, PFIS-V/variant-­and-­
equivalence-­aware(t,t) made the most accurate assumptions
about programmers’ variations foraging.

However, further analysis revealed that the above result
does not hold for all participants: in fact, there existed two
groups of participants. See Figure 6: the average accuracy
of PFIS-V varied with the data models for Group-1 partici-
pants (lines do not overlap), while no such differences were
observed for Group 2 (the four lines almost overlap).

Before we reason about the differences between these two
groups, let us first review the foraging activities of the pro-
grammers in the study. Participants had to find and reuse
snippets of code from an earlier variant, which included
multiple foraging activities: (i) find the right “source” vari-
ant from over 700 variants, (ii) forage within that source
variant to find the task-relevant patches, and (iii) make
changes to the variant containing the latest version of the
code (“destination” variant). In IFT terminology, foraging
for the right variant from among several variants is called
between-variant foraging, while foraging within a variant
to find relevant patches is called within-variant foraging. In
both these kinds of foraging, participants used different
types of cues to lead them to their prey [41].

Figure 5. Not only can PFIS-V predict navigations that PFIS3 cannot, PFIS-V also does so with a higher accuracy than PFIS3.

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6238

Between-­variant foraging: two behaviors
Let us now revisit the two participant groups: the primary
difference between the two groups of participants is that
they used different types of cues for their between-variant
foraging. In order to find a right variant for reuse, Group-1
participants (2 out of 7) predominantly looked for differ-
ences in the source code between variants, while Group-2
participants (5 out of 7) exclusively used the variants’
timestamp, changelogs or differences in the game’s output.
In IFT terms, Group-1 participants foraged in source-code
patches using source-code words as cues, whereas Group-2
participants foraged extensively in non-source-code patches
(like output, changelog) and used both textual and non-text-
based (visual) cues. Both groups of participants, then, pri-
marily used words in source-code as cues to locate the right
patches within the variant (within-variant foraging).

Ideally, a computational model like PFIS-V should aim to
model both within- and between-variant foraging of pro-
grammers, irrespective of the types of cues they might use
or the types of patches they might forage in. Currently,
PFIS-V can very well model within-variant foraging, where
participants foraged in source-code patches and used as
cues words in the source code.

However, in the case of between-variant foraging, PFIS-V
modeled the foraging behavior of Group-1 participants
(who used the text-based source-code words as cues) very
well, but failed to model non-source-code patches and cues
(like game’s output), which Group-2 participants heavily
used. This is because the current state of IFT-based compu-
tational models only account for text-based patches and
cues in both their data models as well as algorithms. Signif-

icant additional work is needed to investigate accounting
for non-source-code patches and cue types in IFT-based
computational models; we leave this for future work.

Since PFIS-V can only completely model foraging in
source code patches, using source-code-inspired cues, we
focus our further evaluation of PFIS-V to such foraging
behavior, i.e., for Group-1 participants.

PFIS-­V: Modeling foraging in source-­code patches
Figure 6 compares the average hit rates of the different
PFIS-V configurations for the two groups of participants.
The graph for Group 1 shows four distinct lines: the (aver-
age) accuracy of PFIS-V differed across the data models.
The accuracy of different PFIS-V configurations were as
follows: variant-­and-­equivalence-­aware(t,t) > variant-­and-­
equivalence-­aware(t) > variant-­aware > variant-­unaware.

This indicates that the PFIS-V/variant-­and-­equivalence-­
aware(t,t) model was the most accurate model of program-
mers’ foraging behavior, thereby validating the assumptions
of that data model: (i) participants recognized and were
aware of the similarities in patches between variants (vari-
ant-awareness), (ii) participants made comparisons between
similar patches in different variants (equivalence-aware),
and (iii) they compared similar patches between variants in
terms of both their content and code structure (t,t).

The PFIS-V/variant-­and-­equivalence-­aware(t,t) model has
another advantage too. Table 1 shows the size of the graphs
for the different data models for the two Group-1 partici-
pants: the size of the graph (number of nodes and edges) for
the variant-­and-­equivalent-­aware data models was found to
be smaller than the other two data models. However, note

Figure 6. While the accuracy of PFIS-V varied with the different data models for Group-1 participants, no such differences

existed in Group-2 participants.

Partici-
pant

Variant-unaware Variant-aware Variant-and-equivalence aware(t) Variant-and-equivalence aware(t,t)
Patch
Nodes

Edges Variant-of
Edges

Patch
Nodes

Edges Variant-
of Edges

Patch
Nodes

Edges Variant-of
Edges

Patch
Nodes

Edges Variant-of
Edges

P04 276 623 0 276 817 194 261 752 159 263 756 163
P07 326 821 0 326 2288 1467 218 996 443 291 1780 1032

Table 1. For Group-1 participants, the graphs for the variant-and-equivalence-aware are smaller
(lesser number of nodes and edges) than the other data model graphs.

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6239

that the size of variant-­and-­equivalence-­aware(t,t) was
slightly larger than variant-­and-­equivalence-­aware(t).

This result about PFIS-V configurations finds its applica-
tion in tool design: an operationalization of the variant-­and-­
equivalence-­aware(t,t) data model might be a compelling
option for any tool that supports a large number of variants,
especially for text-based artifacts (Group-1 situations). The
smaller memory footprint of this model suggests that a sim-
ilar representation of variants can be space-efficient, while
the high modeling accuracy implies that the resultant tool
can better address programmers’ foraging requirements in
an exploratory programming context.

The results of our evaluation of PFIS-V thus answers our
second research question (RQ2) on the effectiveness of
PFIS-V in predicting navigations: PFIS-V predicted more
navigations than PFIS3, for all participants. Particularly
PFIS-V modeled Group-1 participants more accurately in
both between- and within-foraging scenarios, whereas it
failed to model the between-variant foraging of Group-2
participants. These results uncover implications (discussed
later) for both IFT-based modeling as well as tool design.

PFIS-­V factors
An important aspect of models predicting programmer nav-
igations, such as PFIS, is the predictive factors (heuristics)
of the model. For example, a recency factor model predicts
navigations based on how recently the programmer has
visited that location. Piorkowski et al. identified seven such
factors (based on prior literature) that can help predict pro-
grammer navigations [32].

PFIS-V is a multi-factor model: it combines three factors to
make predictions, while a single-factor model uses only
one. The three factors in PFIS-V are: (i) recency (did the
programmer visit the patch recently?), (ii) text similarity, (is

the patch similar to bug report or current patch?) and (iii)
source topology (is the patch linked to current patch?).

PFIS-V combines these component factors by assigning
them specific weights. The 𝑝 and ∝ in the PFIS-V algo-
rithm in Figure 3 are indeed weights assigned to different
factors: note that the weights are the same as in PFIS3.
Studying the predictions made by individual factors can
provide insights for tuning these weights in PFIS-V, there-
by improving predictive accuracy. To this end, we study the
predictions for one Group-1 participant (P07), in the vari-
ant-and-equivalence-aware(t,t) configuration (since it yield-
ed highest accuracy, as discussed in RQ2).

Figure 7(a) compares the hit rates (Y-axis) of PFIS-V with
its constituent single-factor models. Consistent with Pior-
kowski et al.’s results in single variant situations [32], we
see that PFIS-V (blue) is a more accurate predictor of pro-
grammer navigations than its constituent single factors.

To see how each factor contributes to PFIS-V’s accuracy,
consider a scenario where a programmer navigates to a new
(earlier unvisited) patch by scrolling to an adjacent method.
Since the programmer has never navigated to the patch ear-
lier, the recency single-factor model returns “Unknown”.
However, the source-topology factor that considers adjacent
patches can predict this navigation. Similarly, in variations
foraging scenario, the “variant-of” links (source topology)
or text similarity can predict navigations to similar patches
in different variants. Thus, when one factor fails to predict,
another factor fills in the gap and makes a prediction: PFIS-
V can make accurate predictions due to such synergy.

See Figure 7: for P07, recency yields higher hit rates (which
is good) as well as has higher unknown rates (a limitation).
On the other hand, although text similarity and source to-
pology yield lower hit rates, they predict navigations where

Figure 7. PFIS-V combines three factors (recency, source topology, text similarity): a synergy of these three factors leads

to better predictive accuracy (higher hit rates (a), lower unknown rates (b)) than that of the individual factors.

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6240

recency cannot. Thus, no single factor in PFIS-V outper-
forms others in predicting programmer’s navigations.

Given that a combination of factors in PFIS-V results high-
er predictive accuracy than just individual factors, we esti-
mated the maximum accuracy that can be obtained by com-
bining them: this serves as a benchmark for PFIS-V. We
did this by computing the predictions made by an optimal
combination of the three PFIS-V factors. For each attempt-
ed prediction, an optimal combination model yields the best
prediction made by its component models. For example, if
the three PFIS-V factors predicted a navigation with ranks
4, 20 and 30 respectively, their optimal combination model
returns 4; therefore, at threshold N=10, it yields a hit
(though only one constituent model yields a hit).

Figure 7(a)’s grey line shows the hit rates from such an
optimal combination model (for P07). At threshold N=10,
the hit rate of the optimal combination model is 60%, while
that of PFIS-V is 51%. Further, the two models have the
same unknown rates (Figure 7(b)). The marginal difference
in hit rates between the two models is an indicator of PFIS-
V’s success, given that the optimal combination model is
only a theoretical ideal while PFIS-V is a practical model.

DISCUSSION

Designing for variants
The presence of variants in large information spaces, such
as programs, adds additional cognitive load as people have
to forage for differences among similar variants. Modern
software tools that represent variants (such as Git, a version
control system) aim to support this foraging behavior by
considering the equivalence among variants in their inter-
faces, i.e., these tools minimize cognitive load on users by
leaving out whatever is similar, and only showing the dif-
ferences between consecutive variants. However, from an
IFT perspective, there are missing aspects in these tools.
For example, the navigation affordances in tools that sup-
port variants are constrained, e.g., the absence of links from
one patch to a similar patch across different variants [5].

Our model allows researchers and tool builders to evaluate
hypotheses of programmers’ foraging behavior in their en-
vironment. For example, one can posit that a programmer
treats a method as different if the method got moved within
a file. Such a hypothesis can be validated by comparing the
modeling accuracies of PFIS-V while using text-based and
text-and-topology-based similarity.
Our work also has several implications for tools. For exam-
ple, the higher accuracy of variant-aware data models re-
veals the importance of navigation affordances between
similar patches across variants (“variant-of” links). Similar-
ly, the comparison results of the four data models reveals
that the variant-and-equivalence-aware(t,t) model makes the
closest assumptions about programmers’ foraging. There-
fore, tools aiming to support variation foraging can directly
import this data model as their underlying data structure to
represent variants.

Non-­source code cues
Almost all IFT-based predictive models in programming
thus far only model foraging among source-code patches,
thereby only considering source-code-word cue types for
predicting navigation. This is especially true for the PFIS
family of models. However, our study participants used
non-source-code patches and cues for their between-variant
foraging, in exploratory programming scenarios [41].

In fact, our evaluations showed that there were two distinct
types of foragers. Group 1 used source-code cue types and
PFIS-V was able to accurately model foraging. However,
Group 2 used non-source code cue types (e.g., output and
changelogs) during their between-variant foraging, which
PFIS-V does not capture in its model. This interfered with
PFIS-V’s ability to model Group 2’s foraging behavior,
thereby also limiting our ability to harness the model to
understand (and predict) these programmers’ foraging.

This reveals a gap in current IFT models—for programming
as well as other variationed information spaces. For pro-
gramming, modeling only source code cue types is insuffi-
cient in the context of multiple variants. Expanding to other
types of information patches, such as outputs with visual
content, mixed-media patches, semantic use of color, etc.,
can lead to significant new thought about comparing vari-
ants. Therefore, IFT-based computational models need to
be extended to account for such patches. However, compu-
ting similarities and differences between output or test re-
sults patches between variants is a non-trivial problem, let
alone modeling programmers’ foraging behavior heavily
involving such visual comparisons, as in our study [41]. We
consider this to be an important new research opportunity in
the area of computationally modeling variations foraging.

CONCLUSION
In this paper, we present a new computational model (PFIS-
V) to model people’s foraging behavior through an infor-
mation space with variants. Our evaluation shows that
PFIS-V predicted up to 20% more navigations than PFIS3,
the latest of the PFIS family of models. Further, PFIS-V’s
predictions were up to 25% more accurate than PFIS3.

Such a computational model provides two benefits to HCI:
researchers can use the model to gather evidence to support
or refute hypotheses about variations foraging, and the
model can guide as well as be directly imported to tools.
Finally, our results point to a challenging open research
problem for predicting people’s foraging behaviors over
variationed information space with multiple types of infor-
mation patches. We posit that it is time that IFT-based
models account for such foraging behavior, which is espe-
cially important in variations foraging situations.

ACKNOWLEDGMENTS
We thank the reviewers for their feedback and our partici-
pants for their help. This work was funded in part by NSF
1253786, 1302113, 1314384 and 1559657 and David Pior-
kowski’s IBM PhD fellowship.

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6241

REFERENCES
1. Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira

Dontcheva, and Scott R. Klemmer. 2009. Two studies
of opportunistic programming: Interleaving web forag-
ing, learning, and writing code. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI '09), 1589-1598.

2. Margaret M. Burnett, and Brad A. Myers. 2014. Future
of end-user software engineering: Beyond the silos.
In Proceedings of the on Future of Software Engineer-
ing, 201-211.

3. Ed H. Chi, Peter Pirolli, and James Pitkow. 2000. The
scent of a site: A system for analyzing and predicting
information scent, usage, and usability of a web site. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’00), 161-168.

4. Ed H. Chi, Peter Pirolli, Kim Chen, and James Pitkow.
2001. Using information scent to model user infor-
mation needs and actions and the Web. In Proceedings
of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI’01), pp. 490-497.

5. Mihai Codoban, Sruti Srinivasa Ragavan, Danny Dig,
and Brian Bailey. 2015. Software history under the
lens: a study on why and how developers examine it.
In Proceedings of the International Conference on
Software Maintenance and Evolution (ICSME’15), pp.
1-10.

6. Paul Clements and Linda Northrop. 2001. Software
Product Lines: Patterns and Practice. Addison-Wesley
Professional.

7. Davor Cubranic, Gail C. Murphy. 2003. Hipikat: Rec-
ommending pertinent software development artifacts.
In Proceedings of the 25th International Conference on
Software Engineering (ICSE ’03), 408-418.

8. Robert DeLine, Amir Khella, Mary Czerwinski,
George Robertson. 2005. Towards understanding pro-
grams through wear-based filtering. In Proceedings of
the ACM Symposium on Software Visualization, 183-
192.

9. Scott D. Fleming, Chris Scaffidi, David Piorkowski,
Margaret Burnett, Rachel Bellamy, Joseph Lawrance,
and Irwin Kwan. 2013. An information foraging theory
perspective on tools for debugging, refactoring, and re-
use tasks. In ACM Transactions on Software Engineer-
ing and Methodology, 22,14: 41 pages.

10. Wai-Tat Fu, and Peter Pirolli. 2007. SNIF-ACT: A
cognitive model of user navigation on the World Wide
Web. Human Computer Interaction 22.4 (2007): 355-
412.

11. Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo
Yang, and Scott R. Klemmer. 2008. Design as explora-
tion: Creating interface alternatives through parallel au-

thoring and runtime tuning. In Proceedings of the 21st
Annual ACM Symposium on User Interface Software
and Technology (UIST '08), 91-100.

12. Björn Hartmann, Sean Follmer, Antonio Ricciardi,
Timothy Cardenas, and Scott R. Klemmer. 2010. D.
note: Revising user interfaces through change tracking,
annotations, and alternatives. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, 493-502.

13. Austin Z. Henley, and Scott D. Fleming. 2016. Yester-
code: Improving code-change support in visual data-
flow programming environments. In IEEE Symposium
on Visual Languages and Human-Centric Computing
(VL/HCC’16).

14. William C. Hill, James D. Hollan, Dave Wroblewski,
Tim McCandless. 1992. Edit wear and read wear. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’92), 3-9.

15. Mikkel R. Jakobsen, Kasper Hornbaek. 2006. Evaluat-
ing a fisheye view of source code. In Proceedings of
the SIGCHI Conference on Human Factors in Compu-
ting Systems (CHI ’06), 377-386.

16. Amy K. Karlson, Greg Smith, and Bongshin Lee. 2011.
Which version is this? Improving the desktop experi-
ence within a copy-aware computing ecosystem. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '11), 2669-2678.

17. Mik Kersten and Gail C. Murphy. 2005. Mylar: A de-
gree-of-interest model for IDEs. In Proceedings of the
4th International Conference on Aspect-Oriented Soft-
ware Development 159-168.

18. Scott R. Klemmer, Michael Thomsen, Ethan Phelps-
Goodman, Robert Lee, and James A. Landay. 2002.
Where do web sites come from? Capturing and inter-
acting with design history. In Proceedings of the
SIGCHI Conference on Human factors in Computing
Systems (CHI '02), 1-8.

19. Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and
Htet Htet Aung. 2006. An exploratory study of how
developers seek, relate, and collect relevant infor-
mation during software maintenance tasks. In IEEE
Transactions on Software Engineering. 32, 12: 971-
987.

20. Ranjitha Kumar, Jerry O. Talton, Salman Ahmad, and
Scott R. Klemmer. 2011. Bricolage: Example-based re-
targeting for web design. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI '11), 2197- 2206.

21. Sandeep Kaur Kuttal, Anita Sarma, Gregg Rothermel.
2013. Predator behavior in the wild web world of bugs:
An information foraging theory perspective. In IEEE

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6242

Symposium on Visual Languages and Human Centric
Computing (VL/HCC’13), 59-66.

22. Sandeep K. Kuttal, Anita Sarma, and Gregg Rothermel.
2014. On the benefits of providing versioning support
for end users: an empirical study. In ACM Transactions
on Software Engineering and Methodology 21, 2:9.

23. Joseph Lawrance, Rachel Bellamy, Margaret Burnett.
2007. Scents in Programs: Does information foraging
theory apply to program maintenance? In IEEE Sympo-
sium on Visual Languages and Human-Centric Com-
puting (VL/HCC 2007), 15-22.

24. Joseph Lawrance, Rachel Bellamy, Margaret Burnett,
and Kyle Rector. 2008. Using information scent to
model the dynamic foraging behavior of programmers
in maintenance tasks. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI '08), 1323-1332.

25. Joseph Lawrance, Christopher Bogart, Margarett Bur-
nett, Richard Bellamy, and Kyle Rector. 2009. How
people debug, revisited: An information foraging theo-
ry perspective. In IEEE Transactions on Software En-
gineering, 117-124.

26. Joseph Lawrance, Margaret Burnett, Rachel Bellamy,
Christopher Bogart, and Calvin Swart. 2010. Reactive
information foraging for evolving goals. In Proceed-
ings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI '10), 25-34.

27. Brad A. Myers, YoungSeok Yoon, and Joel Brandt.
2013. Creativity support in authoring and back-
tracking. In Proc. Workshop on Evaluation Methods
for Creativity Support Environments at CHI (CHI '13),
40-43.

28. Jakob Nielsen. 2003. Information foraging: Why
Google makes people leave your site faster. Jakob
Nielsen’s Alertbox.

29. Nan Niu, Anas Mahmoud, and Gary Bradshaw. 2011.
Information foraging as a foundation for code naviga-
tion (NIER track). In Proceedings of the 33rd Interna-
tional Conference on Software Engineering (ICSE '11),
816-819.

30. Chris Parnin and Carsten Gorg. 2006. Building usage
contexts during program comprehension. In 14th IEEE
International Conference on Program Comprehension
(ICPC'06), 13-22.

31. Alexandre Perez and Rui Abreu. 2014. A diagnosis-
based approach to software comprehension. In Pro-
ceedings of the 22nd International Conference on Pro-
gram Comprehension (ICPC’14).

32. David Piorkowski, Scott D. Fleming, Christopher Scaf-
fidi, Liza John, Christopher Bogart, Bonnie E. John,
Margaret Burnett, and Rachel Bellamy. 2011. Model-
ing programmer navigation: A head-to-head empirical

evaluation of predictive models. In IEEE Symposium
on Visual Languages and Human-Centric Computing
(VL/HCC’11), 109-116.

33. David Piorkowski, Scott Fleming, Christopher Scaffidi,
Christopher Bogart, Margaret Burnett, Bonnie John,
Rachel Bellamy, and Calvin Swart. 2012. Reactive in-
formation foraging: An empirical investigation of theo-
ry-based recommender systems for programmers. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '12), 1471- 1480.

34. David Piorkowski, Scott D. Fleming, Irwin Kwan,
Margaret M. Burnett, Christopher Scaffidi, Rachel K.E.
Bellamy, and Joshua Jordahl. 2013. The whats and
hows of programmers' foraging diets. In Proceedings
of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI '13), 3063-3072.

35. David Piorkowski, Scott D. Fleming, Christopher Scaf-
fidi, Margaret Burnett, Irwin Kwan, Austin Z. Henley,
Jamie Macbeth, Charles Hill, and Amber Horvath.
2015. To Fix or to Learn? How production bias affects
developers' information foraging during debugging. In
IEEE International Conference on Software Mainte-
nance and Evolution (ICSME '15), 11-20

36. Peter Pirolli, and Stuart Card. 1995. Information forag-
ing in information access environments. Proceedings of
the SIGCHI Conference on Human Factors in Compu-
ting Systems (CHI ’95), 51-58.

37. Peter Pirolli. 1997. Computational models of infor-
mation scent-following in a very large browsable text
collection. In Proceedings of the ACM SIGCHI Con-
ference on Human Factors in Computing Systems (CHI
'97), 3-10.

38. Peter Pirolli, Wai-Tat Fu. 2003. SNIF-ACT: A model
of information foraging on the World Wide Web. User
modeling. Springer Berlin Heidelberg, 45- 54.

39. Peter Pirolli, Wai-tat Fu, Ed Chi, and Ayman Farahat.
2005. Information scent and web navigation: Theory,
models and automated usability evaluation. In Pro-
ceedings of HCI International.

40. Peter Pirolli. Information Foraging Theory: Adaptive
Interaction with Information. 2007. Oxford University
Press.

41. Sruti Srinivasa Ragavan, Sandeep Kaur Kuttal, Charles
Hill, Anita Sarma, David Piorkowski, and Margaret
Burnett. 2016. Foraging among an overabundance of
similar variants. In Proceedings of the 2016 CHI Con-
ference on Human Factors in Computing Systems (CHI
'16), 3509-3521.

42. Vineet Sinha, David Karger, and Rob Miller. 2006.
Helping users manage context during interactive ex-
ploratory visualization of large codebases. In Visual

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6243

Languages and Human-Centric Computing
(VL/HCC'06), 187-194.

43. Jared M Spool, Christine Perfetti, David Brittan. 2004.
Designing for the scent of information, User Interface
Engineering.

44. Margaret-Anne Storey, Casey Best, Jeff Michaud,
Derek Rayside, Marin Litoiu, Mark Musen. 2002. In
Extended Abstracts on Human Factors in Computing
Systems (CHI EA ’02), 520-521.

45. Michael Terry and Elizabeth D. Mynatt. 2002. Side
views: Persistent, on-demand previews for open-ended
tasks. In Proceedings of the 15th Annual ACM Sympo-
sium on User Interface Software and Technology
(UIST '02), 71-80.

46. Sruti Srinivasa Ragavan. PFIS-V. 2016. Retrieved on
Dec 27, 2016 from
http://web.engr.oregonstate.edu/~srinivas/pfis-v.html

47. YoungSeok Yoon and Brad A. Myers. 2014. A longi-
tudinal study of programmers' backtracking. In Visual
Languages and Human-Centric Computing (VL/HCC
'14), 101- 108.

48. Natural Programming. Retrieved on August 21, 2016
from http://www.cs.cmu.edu/~NatProg/cryolite.html.

Helping Software Developers CHI 2017, May 6–11, 2017, Denver, CO, USA

6244

