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ABSTRACT  
Foraging among similar variants of the same artifact is a 
common activity, but computational models of Information 
Foraging Theory (IFT) have not been developed to take 
such variants into account.  Without being able to computa-
tionally predict people’s foraging behavior with variants, 
our ability to harness the theory in practical ways—such as 
building and systematically assessing tools for people who 
forage different variants of an artifact—is limited.  There-
fore, in this paper, we introduce a new predictive model, 
PFIS-V, that builds upon PFIS3, the most recent of the 
PFIS family of modeling IFT in programming situations. 
Our empirical results show that PFIS-V is up to 25% more 
accurate than PFIS3 in predicting where a forager will nav-
igate in a variationed information space. 
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ACM  Classification  Keywords  
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INTRODUCTION  
When engaged in computer-supported creative tasks—such 
as graphic design, creating a presentation, exploratory pro-
gramming, or writing this CHI paper—people often need to 
build upon and compare multiple ideas, fit them together 
and save the intermediate steps [1]. One effect of such ex-
ploration can be the creation of many, many variants of the 
same artifact (e.g., image with different colors) [2, 12, 45].  

People need to find (or re-find) and compare these earlier 
variants of the artifact, especially when things go wrong, 
they reach a dead-end, or they want to opportunistically 
harvest specific bits and pieces of prior work.  For example, 
working in such ways with multiple variants is especially 

common in exploratory programming, where program-
mers—novices and experts—experimentally blend writing 
new code with reusing bits and pieces of code from differ-
ent resources, including earlier variants [1, 2, 18, 27, 47].   

Finding one’s way to the right information in a large infor-
mation space is difficult—even without the presence of 
multiple variants. For example, one study reported pro-
grammers spending about 35% of their time on just the me-
chanics of navigating a single variant of source code [19], 
and another study reported that, when other aspects of in-
formation seeking were also taken into account, program-
mers spent an average of 50% of their time navigating [34].   

Information Foraging Theory (IFT) [36] helps explain how 
people spend their time in their information seeking activi-
ties. IFT proposes that a person seeking information follows 
the “information scent” perceived from the signposts 
(“cues”) to locations of potentially useful information 
(patches), similar to the way predatory animals in the wild 
follow the scent to their prey. Since foraging in the pres-
ence of multiple variants adds a need for the forager to 
cognitively discern differences among very similar cues and 
patches, it stands to reason that the cost to foragers in a var-
iationed information space will be higher than when patches 
and cues are more unique and distinctive. 

Indeed, a recent study observed that foragers in a varia-
tioned information space adopted additional foraging mech-
anisms and strategies in the presence of multiple, similar 
variants [41]. These initial observations suggest the need 
for a deeper understanding of how well IFT can explain 
people’s behavior in such a foraging situation, and how we 
might then harness IFT to build tools to support variations 
foraging. Computational models allow us to do this: they 
help researchers empirically validate concrete hypotheses 
derived from study observations and guide tool-building. 

Toward this end, we present a new computational model of 
foraging that is able to account for multiple similar variants 
in an information space. Our new model, called PFIS-V 
(PFIS for Variation Space), builds on the PFIS (Program-
mer Flow by Information Scent) family of predictive IFT 
models for programming situations [32]. We chose pro-
gramming as our domain because, as mentioned earlier, 
variations are a commonly-occurring phenomenon in this 
already information-seeking-intensive domain; however, 
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the theoretical foundations should apply to other domains 
(e.g., web design, text documents, slide decks, etc.) as well. 

We begin by modeling the properties of variants—such as 
similarities and differences—that users attended to during 
their variations foraging, leading us to our first RQ: 

RQ1: How can we account for variants in computationally 
modeling programmers’ foraging behavior? 

We then empirically investigate the effectiveness of our 
computational model using the data collected from a prior 
study on variations foraging [41] to answer:  
RQ2: How effective is our new computational model? 

BACKGROUND  AND  RELATED  WORK  

Variants  
Working with variants is a common phenomenon in explor-
atory, creative tasks.  Researchers have built several tools to 
support variants in both non-programming (such as graphic 
design [11, 12, 45], personal information management [16]) 
as well as programming domains (e.g., web design [18, 20], 
professional software development [6], end-user program-
ming [22, 13]). However, none of these tools (except [13]) 
support variations in exploratory programming. 

Prior work on programmers reusing code from other vari-
ants during exploratory programming defined a program 
variant as a “syntactically valid program that occurs to-
gether with other similar, related programs” [41]. For ex-
ample, if a programmer took the source code of a website 
and modified the background color of the home page, the 
resulting new program is a variant of the original program. 
The results, grounded in Information Foraging Theory 
(IFT), explain programmers’ foraging behavior while seek-
ing the right variant (and the relevant code snippets within) 
to reuse. We build on this prior work and use IFT to com-
putationally model programmers’ variations foraging. 

Information  Foraging  Theory  (IFT)  
Information Foraging Theory is a theory of how people 
engaged in information-intensive tasks seek information. 
IFT is based on optimal foraging theory that explains how 
predators hunt for their prey in the wild [36].  The theory 
was first developed to explain people’s information-seeking 
behavior in large document collections. Since then, it has 
been applied to explain user behavior in several other do-
mains like web browsing and programming. 

IFT borrows constructs from the optimal foraging theory: a 
person seeking information in an information environment 
(e.g., programmer searching for a code snippet in an IDE) is 
similar to a predator seeking prey in a foraging ground 
(predator = person, prey = information, foraging ground = 
information environment). The prey might be present in 
locations in the information environment called patches 
(e.g., files, classes or methods) and the patches might be 
connected to each other via links (e.g., IDE shortcut to go 
from one method to another). The network of patches and 
links together is called the topology. 

Associated with the links is information that acts as cues for 
the predator: a cue tells the predator what might be at the 
other end of the link, thereby, becoming signposts to their 
prey. For example, the words in a method name act as cues 
about what the method does. The predator uses the scent 
emanating from these cues to reach the information they 
seek, just like animals sniff their way to their prey.  

One of the ways in which IFT has been applied is to com-
putationally model user behavior during different infor-
mation-seeking tasks [3, 4, 10, 23, 37, 38, 39]; such models 
have informed the design of tools and interfaces for people 
engaged in information-intensive tasks. For example, the 
WUFIS [3] model uses the structure and content of web 
sites to predict which page a user would navigate to; this in 
turn helped lay the foundations for layout and information 
design in websites [43] and web-search engines [28].  

Recently, IFT has been applied to programming tasks such 
as requirements tracing, debugging, maintenance and IDE 
design [9, 21, 23, 25, 29, 34, 35, 40, 31]. Researchers have 
built computational models to predict, and thus explain 
programmers’ navigation in source code. The first such 
model, namely PFIS [24], used source code and task de-
scriptions to predict which classes a programmer, working 
on a given task, would navigate to. PFIS was then extended 
to PFIS2 (and later refined to PFIS3 [32]) to model “reac-
tive IFT” [26], that accounted for the evolving foraging 
goals of programmers as they perform their task. Piorkow-
ski et al. used these models to build a system that recom-
mends parts of code relevant to the current foraging goals 
(and sub-goals) [33]. However, the PFIS family so far has 
only accounted for a single program variant and is insuffi-
cient to explain foraging in a variationed information space. 

Predicting  programmer  navigations 
Navigating source code is nontrivial [19]: one of the ways 
researchers have attempted to help programmers navigate 
source code is by recommending source-code locations that 
the programmer might want to navigate next. To make their 
recommendations, these tools use different heuristics. Sev-
eral tools use the historical activity of the programmer (e.g., 
past visited locations) to make a prediction [8, 14, 17, 30] 
while others use textual similarity (to bug report or current 
location), structure of the program (such as method invoca-
tions) [7, 15, 42, 44] or a combination of these [33]. How-
ever, none of these tools consider the case of a programmer 
navigating through multiple program variants. 

MODELING  PROGRAMMER  NAVIGATIONS  
Computational models serve two purposes: (i) they provide 
a way to validate hypotheses about programmers’ foraging 
behavior, and (ii) the models can be directly used for theo-
ry-based tool building. We build on an existing family of 
predictive models, namely PFIS (Programmer Flow by In-
formation Scent) [24], that model programmer’s foraging in 
a single program variant. We chose PFIS because it is 
grounded in IFT, which is the underlying theory for several 
computational models of user behavior in several domains 
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[3, 10, 23], including programming activities like debug-
ging [25] and maintenance [24]. 

PFIS3: Before we describe PFIS3 (the most recent model 
in the PFIS family), note that predictive models contain two 
parts: (i) the data model representing the program—its 
methods, words and links, and (ii) the algorithm that uses 
the data model to predict programmers’ navigations in the 
program. In the rest of this paper, we use following termi-
nology: predictive model refers to any model that predicts 
programmer navigations; data model refers to the underly-
ing representation of the program; and the algorithm is re-
sponsible for making predictions using the data model (Pre-
dictive Model = Data Model + Algorithm). 

PFIS3’s data model operationalizes the topology of the in-
formation space (network of patches and links) as a graph. 
The information patches (here, methods) are represented as 
nodes (called patch nodes) while links between patches are 
represented by edges. A link between two patches exists 
when a programmer can go from one patch to another in a 
single-step IDE action (e.g., following an IDE shortcut to 
go to method definitions, scrolling to adjacent methods). 
The words in patches are modeled as nodes (called word 
nodes), while edges between patch nodes and word nodes 
indicate that the patch contains the word.  

Figure 1 shows a program (left) represented in the data 
model (right). For each method (patch) in the program (e.g., 
sum, count, average), there is a patch node (blue 
ellipse) in the graph, and for every word in the program 
except reserved keywords (e.g., numbers, words in meth-
od names), the graph contains a word node (red square). 

The method average calls methods sum and count, and 
a programmer can navigate between these methods using 
IDE shortcuts; therefore, these patches are linked via an 
invocation edge (labeled “inv”). Similarly, a programmer 

can navigate from the method count to the methods sum 
and average by scrolling; therefore, these patches are 
linked via adjacency edges (labeled “adj”). Thus the links in 
the graph model the environment’s navigation affordances.  

Let us look at the method average: the patch contains 
words like average (its name), numbers (parameter), and its 
content (calls to sum, count); these words in the patch 
serve as cues for a programmer foraging in this patch. The 
dashed edge (---) between the patch node average and the 
word node numbers indicates that the patch contains the 
word. Since the word numbers is also found in patches 
sum and count, the numbers word node is also connected 
to sum and average patch nodes via dashed edges (---).  

The PFIS3 algorithm uses the data model to predict pro-
grammers’ between-patch navigations. It does so by com-
puting the “scent” of links from the programmer’s current 
patch to all other patches the programmer has seen thus far. 
First, the algorithm activates some patches with initial 
weights based on the programmer’s current location. The 
algorithm then spreads this activation to other patches based 
on source-code cues (words), the programmer’s past navi-
gation history, and the topology of the information space. 
The patches are then ranked by their resultant weights, and 
the algorithm returns the patch with the lowest rank as its 
prediction for the programmer’s next navigation [33].  

Let us look at an example (based on Figure 1) of the algo-
rithm’s working. Consider a programmer currently in meth-
od count. Although both sum and average are adja-
cent patches to count, the PFIS3 algorithm spreads higher 
activation to average than sum. This is because (a) there 
is an additional invocation link between count and av-
erage, and (b) the patch average has more words (num-
bers, count) in common with count, than sum (only 
numbers). Therefore, the algorithm predicts a navigation 
from count to average. Note that PFIS3 also takes pro-

 
Figure 1. The PFIS3 data model operationalizes IFT: patches (methods) and words in source code are represented as nodes 

 while links between patches and “patch contain word” relationships are represented by edges. 
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grammers’ navigation history into account for making pre-
dictions, which we ignore here for illustration purposes. 

While PFIS3 or other IFT models predict user behavior in a 
single variant of an artifact, none of them consider multiple 
variants. This leads us to our first research question: 

RQ 1: How can we account for variants in computationally 
modeling programmers’ foraging behavior? 

We answer RQ1 in two stages: RQ 1a addresses representa-
tion of variants in data models, and RQ 1b focuses on algo-
rithms that account for variants while making predictions.  

RQ 1a: How do we represent variants to computationally 
model foraging in the presence of variants? 

The PFIS3 data model can represent a single variant of a 
program. We extend this data model to represent multiple 
variants in four different ways, each making different as-
sumptions about programmers’ foraging among variants. 

Variant-­unaware  data  model  
The variant-­unaware data model is very similar to the 
PFIS3 data model: it represents patches (along with associ-
ated cues and links) from multiple variants in the same way 
PFIS3 represents a single variant of a program (Recall that 
a variant is an entire copy of a program). Such a data model 
is unaware of the properties of variants (such as the similar-
ities and differences between variants), which programmers 
are aware of, and use in their foraging [41]. 

Figure 2(a) shows the variant-­unaware representation of a 
program with four variants. We represent methods in the 
program using letters A,   P,   Q,   R and S: nodes represent 
patches and edges represent links between them. A pro-

grammer starts with the first variant and makes changes to 
method R (whereby, 𝑅" = 𝑅 + ∆𝑅) to create a new variant 
(and subsequently creates other variants too). While a pro-
grammer may be aware that patches R,  R',  and  R" (or all of 
P) are similar, related patches across different variants, the 
variant-­unaware model is unaware of these properties. 

Since this data model captures the navigation affordances 
currently available in IDEs (and our study environment 
[41]), we use it as the baseline for our comparisons. 

Variant-­aware  data  model  
One property of variants is that they have similar patches: 
prior results showed that programmers capitalized on this 
property while foraging [41]. We modeled this property by 
introducing “variant-of” links between similar patches 
across variants, thereby making it “variant-aware”. We de-
fine two patches (in different variants) to be similar, if they 
have the same fully-qualified names (folder, file, class and 
method names) relative to the variant that contains them.  

See the variant-aware data model in Figure 2(b):  the “vari-
ant-of” links (dotted lines) between all patches P, or R,  R',  
and  R" indicate similar patches across different variants. 

Variant  and  equivalence  aware  data  models  
Often, a small change in one variant (such as font color and 
size) might result in a new variant of a program. This leads 
to a lot of not just similar, but identical (exactly the same) 
patches among temporally close variants [41]. In a pro-
gramming context, this means that methods can have the 
same fully-qualified names (folder, file, class and method 
names), as well as exactly the same content (parameter 
names, definition and words) across different variants.  

 
Figure 2. In order to introduce variant-awareness, we added “variant-of” edges (dotted lines) between similar patches in different 
variants (b). Further, we collapsed equivalent patches based on text-based similarity (c), or text-and-topology-based similarity (d). 
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From a foraging perspective, this means that the cues and 
the scent from these identical patches are also the same; 
hence, it does not matter which of these identical patches a 
programmer forages in. Since these patches are all equiva-
lent to the programmer, we call them “equivalent” patches. 

From a modeling perspective too, it does not matter which 
one of these equivalent patches a predictive algorithm pre-
dicts. Therefore, we collapse multiple equivalent patches 
into one super-patch to form a variant-and-equivalence-
aware data model. We do this in two ways: 

In text-­based  equivalence  (denoted by suffix t), we call two 
patches equivalent if their contents are identical, i.e., they 
have exactly the same text. From a forager’s perspective, 
this models the case where a programmer does not differen-
tiate between patches (and treats them as equivalent) as 
long as they have the same content. 

However, programmers might differentiate patches across 
variants even though they might have the same content! 
Consider the following scenario: two variants of a program 
contain identical patches P. In the first variant, there is a 
patch A that is right above (adjacent) to P, while there is no 
adjacent patch A in the second variant. In some situations, a 
programmer foraging in the two variants might perceive the 
two patches as different. In fact, prior studies on program-
mer navigation have shown that source-code structure is an 
important factor in modeling programmer navigations [32]. 
This leads us to an alternate definition for equivalence: 

In text-­and-­topology-­based  equivalence (denoted by suffix 
t,t), two patches are equivalent if: (a) they have exactly the 
same content, and (b) their neighbors (patches linked by 
invocation and adjacency links) in the topology are similar 
(not necessarily identical). 

See Figure 2 (b): patch P has links to patch A in the first 
three variants, but not in the last variant. The variant-and-
equivalence-aware(t) only considers text similarity; there-
fore, patch P from all variants are collapsed into one single 
patch in Figure 2(c). On the other hand, the variant-and-
equivalence-aware(t,t) considers similarities in both text as 
well as topology: therefore, it collapses the patch P in the 
first three variants (having same neighbors A and Q) alone 
into one node, while excluding the patch P in the last vari-
ant (since it has no neighbor A). 

Notice that in both cases the variant-and-equivalence-aware 
data models preserve the notion of similar patches (variant 
awareness), denoted by the “variant-of” links between simi-
lar patches in both Figure 2(c) and (d).  

One concluding remark about the two variant-­and-­
equivalence-­aware data models is that they represent varia-
tions to an artifact by only capturing the differences be-
tween the variants. This is unlike the variant-unaware or 
variant-aware data models which also capture redundant, 
similar patches. For example, in Figure 2, both variant-
unaware and variant-aware data models retains four copies 
of patch Q, even though Q has not changed across variants 

(there is no Q'), whereas the two variant-and-equivalence-
aware representations contain only one patch Q. This result 
can be directly applied in practical cases where variants 
need to represented or stored. 

Having thus addressed the data modeling problem for pro-
gram variants (RQ 1a), we next focus on the predictive al-
gorithm (RQ 1b). Before we proceed to develop a new al-
gorithm to predict programmer navigations in a variationed 
information space, we first modify PFIS3 to predict pro-
grammer navigations using the above four data models. 

PFIS3 models foraging in a single program variant where a 
patch node in the data model represents a single patch in the 
program; therefore, the PFIS3 algorithm does not distin-
guish between patches and patch nodes. However, the 
PFIS3 approach fails for variant-­and-­equivalence-­aware 
data models where one patch node might represent many 
equivalent (collapsed) patches. Therefore, we tweaked 
PFIS3 to distinguish between patches and patch nodes, and 
predict patch nodes in the graph instead of patches in the 
program. With this tweak, PFIS3 can predict programmer 
navigations in four configurations using the four data mod-
els; these serve as our baseline for comparisons.  

Although PFIS3 can now predict using data models repre-
senting variants, its algorithm does not consider the proper-
ties of variants that programmers capitalize on, during their 
foraging [41]. Therefore, we extend the PFIS3 algorithm to 
account for these properties of variants in order to accurate-
ly model programmer behavior.  

RQ 1b-How can we predict programmer navigation in a 
variationed information space? 

PFIS3 models programmers’ navigations to only patches 
that s/he has already visited (or seen): all other navigations 
are considered “unknown” because the programmer has 
never seen them. However, in the presence of variants, even 
though a programmer has not seen a particular patch, s/he 
might know about it if s/he has already seen a similar patch 
in a different variant. We therefore extend PFIS3 to PFIS-V 
(PFIS for Variants) to model this phenomenon that is 
unique to variations foraging. 

Consider a programmer – let us call her Alice – foraging in 
a method count in variant V1 of a program. She then nav-
igates to a different variant V2 and again sees a method 
count in V2. Even before Alice makes a decision to navi-
gate to, or forage in the method count in V2, she already 
has some prior knowledge about the method; therefore, the 
method count is not entirely unknown to Alice. IFT as-
sumes that an information forager makes rational decisions 
[37]; therefore, when Alice does decide to navigate to the 
method count in variant V2, it stands to reason that she 
has one of the two expectations: the method count in the 
two variants are identical, or, they are both different (de-
pending on her foraging goal). 
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Indeed, prior results showed that programmers looked for 
similarities and differences (based on their foraging goals) 
while foraging among similar patches in different variants 
[41]. From the perspective of modeling such programmer’s 
behavior, there is no way of knowing what difference the 
programmer expects to find (between similar patches in 
different variants); hence the cues and scents for such a 
navigation cannot be modeled until the programmer actual-
ly navigates to the patch. Therefore, PFIS-V assumes and 
models the case that the programmer expects the two simi-
lar patches to be identical, as shown in Figure 3. 

Recall that PFIS-V (and PFIS3) can predict programmer 
navigations in four configurations (using the four data mod-
els): we refer to these configurations using the notation 
“PFIS-V / data model”, e.g., PFIS-V/variant-­unaware. 

EVALUATION  

Methodology  
We evaluated PFIS-V using the data containing over 650 
click-based navigations [32], collected in our prior study 
with seven novice programmers [41]. Participants in the 
study made changes to a JavaScript-based game called Hex-
tris, working in Cloud9, a web-based IDE, on a program-

ming task that lasted 50 minutes. Participants’ IDE actions 
as well as their screen interactions were recorded using 
Cryolite, a Cloud9 logger [48] and screen capture software. 

The participants were asked to make the following changes 
to the latest version of the game (Figure 4(a)): (i) move the 
score indicator above the hexagon, (ii) move the score mul-
tiplier above the hexagon, and (iii) change the score color; 
all “like it was before” (Figure 4 (b)). The phrase “like it 
was before” was used in order to avoid explicitly mention-
ing that the solutions to the tasks were present in earlier 
variants. There were over 700 variants. 

PFIS-­V  evaluation  
We evaluated PFIS-V by predicting the between-patch nav-
igations (navigations between methods)—within or across 
variants—that were made by participants during the pro-
gramming task in the above-said study. We then analyzed 
the accuracy of these predictions, thus answering RQ2:   

RQ 2: How effective is our new computational model, 
namely PFIS-V? 

We answered this question by considering two aspects:  

Unknown  rates  
Recall that models like PFIS3 and PFIS-V cannot predict 
programmer navigations in all cases; in some cases, they 
return “Unknown”. The unknown rate is the percentage of 
navigations for which a model returns “Unknown”. For 
example, an unknown rate of 60% means that the model 
failed to predict 60% of all programmer navigations. 

Figure 5(b) compares the unknown rates of PFIS-V (blue) 
and PFIS3 (yellow): PFIS-V had lower unknown rates than 
PFIS3 for all seven participants (Note that lower is better). 
In other words, in the presence of variations, PFIS-V could 
predict (and hence model) programmer navigations in cases 
where PFIS3 failed to make a prediction. On an average, 
PFIS-V predicted 9.25% more navigations than PFIS3; for 
individual participants this number was as high as 20.19% 
(P07). Note that while the unknown rate indicates how of-
ten a model fails to make a prediction, it does not measure 
the accuracy of the predictions. 

Hit  rates  
Hit rate, on the other hand, can measure the accuracy of 
predictions. Recall that the PFIS family returns the rank at 

Definitions: 

● Patch  set  𝑃:  set  of  all  patches  in  the  topology  that  the  pro-­
grammer  has  seen  so  far.  

● Word  set  𝑊:  set  of  all  words  in  all  patches  in	
  𝑃.  
● Graph  𝐺 = (𝑁, ∪ 𝑁.,𝐸, ∪ 𝐸.	
  ),  where,  
○ 𝑁, :  set  of  nodes  representing  patches  in  𝑃  (a  patch  node  
can  represent  a  single  non-­collapsed  patch  or  multiple  
equivalent  patches  when  collapsed).  

○ 𝑁. :  set  of  nodes  representing  the  words  in  𝑊.  
○ 𝐸,:  set  of  edges  between  two  patch  nodes,  when  the  
patches  are  linked  by  an  adjacency,  invocation  or  a  “vari-­
ant-­of”  link.  

○ 𝐸. :  set  of  edges  between  a  word  node  and  a  patch  node,  
where  the  patch  contains  the  word.  

● Navigation  history  𝐻:  sequence  of  patches  to  which  the  pro-­
grammer  has  navigated  so  far.  
  

Steps  to  predict  the  (k+1)th  patch  in  H:  

● If  programmer  has  not  seen  exact  patch  earlier:  
If  programmer  has  seen  a  similar  patch  𝑃3 :  assume  con-­
tent  of  (𝐾 + 1)67  patch  is  exactly  similar  to  𝑃3 .  
    Else,  return  “unknown”  

● Set  activation  for  each  node  in  𝐺 → 0.  
● For  the  𝑘67patch  𝑝  in  𝐻  and  |𝐻| − 𝛿 < 𝑘,    

- Increment  activation  for  patch  node  for  𝑝  by  0.9|𝐻| − 𝑘.  
● Spread  activation  (∝= 0.85,  edge  weights=1)  such  that  only  
word  nodes  receive  activation.  

● Spread  activation  (∝= 0.85,  edge  weights=1)  such  that  only  
patch  nodes  receive  activation.  

● Rank  the  patch  nodes  in  the  decreasing  order  of  activation.  
- If  𝑡  patch  nodes  are  tied  at  rank  𝑟,  assign  𝑟𝑎𝑛𝑘 = [𝑟 + 6JK

L
]  

to  all  𝑡  patch  nodes.  
● Return  the  rank  for  the  node  representing  the  (𝑘 + 1)67  patch. 

Figure 3. The PFIS-V’s algorithm.  
(Lines in blue indicate the differences from PFIS3) 

   
Figure 4. Participants were asked to move the score 

and multiplier above the hexagon, “like it was before”  
(Left: Before, Right: After) 
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which the algorithm predicts the navigation (to be) made by 
a programmer (as shown in Figure 3). 𝐻𝑖𝑡	
  𝑟𝑎𝑡𝑒	
  (𝑁 = 𝑘) 
read as “hit rate with threshold k”, refers to the percentage 
of navigations that a model predicts at 𝑟𝑎𝑛𝑘 ≤ 𝑘. In other 
words, a “hit rate (N=10) of 60%” means that for 60% of 
the navigations, the actual navigation made by the pro-
grammer was in the top 10 predictions made by the model. 

In order to compare the accuracy of predictions made by 
two models, we compare their hit rates. Following the work 
of Piorkowski et al. on PFIS3 [32, 33], we generally use hit 
rate (N=10), unless specified otherwise. See Figure 5(a): the 
graph is a plot of average hit rates (across all participants) 
yielded by the different configurations of PFIS3 and PFIS-
V, for different thresholds. Irrespective of the underlying 
data model (line colors), we see that on an average, PFIS-V 
(solid lines) had higher average hit rates than PFIS3 (dot-
ted lines), suggesting that programmers did capitalize on 
their knowledge of prior variants, as modeled by PFIS-V. 

Although we found that the increase in hit rates when aver-
aged across all participants was modest (about 10%), we 
saw a much higher increase in accuracy in predictions from 
PFIS3 to PFIS-V for individual participants. In the case of 
participant P07, PFIS-V had an increase of 25% accuracy as 
compared to PFIS3 (PFIS-V modeled with an accuracy of 
65%, while PFIS3 attained a 40% accuracy). Further, PFIS-
V could model individual participants’ navigations with an 
accuracy as high as 83% (participant P01) [46]. Note that 
our results are based on only one study in a specific envi-
ronment; further studies are needed to generalize these re-
sults. We now unpack the results of our evaluation further. 

PFIS-­V  configurations  
Recall that PFIS-V can predict in four different configura-
tions, using four different data models. Each of the four 
data models make different assumptions about the pro-
grammers’ mental model of the variationed information 

space and their foraging behavior. To empirically validate 
our assumptions about programmers’ foraging behavior, we 
further investigated the four PFIS-V configurations.  

In Figure 5(a), the different colored solid lines show the 
average accuracy (hit rates) of PFIS-V for different data 
model configurations. Focusing only on PFIS-V, we see 
that the variant-­aware (yellow) configuration yielded higher 
hit rates than the variant-­unaware (orange) one, while the 
variant-­and-­equivalence-­aware   configurations (overlapping 
green and brown solid lines) yielded even higher accuracy 
than the previous models. Thus, PFIS-V/variant-­and-­
equivalence-­aware(t,t) made the most accurate assumptions 
about programmers’ variations foraging. 

However, further analysis revealed that the above result 
does not hold for all participants: in fact, there existed two 
groups of participants. See Figure 6: the average accuracy 
of PFIS-V varied with the data models for Group-1 partici-
pants (lines do not overlap), while no such differences were 
observed for Group 2 (the four lines almost overlap). 

Before we reason about the differences between these two 
groups, let us first review the foraging activities of the pro-
grammers in the study. Participants had to find and reuse 
snippets of code from an earlier variant, which included 
multiple foraging activities: (i) find the right “source” vari-
ant from over 700 variants, (ii) forage within that source 
variant to find the task-relevant patches, and (iii) make 
changes to the variant containing the latest version of the 
code (“destination” variant). In IFT terminology, foraging 
for the right variant from among several variants is called 
between-variant foraging, while foraging within a variant 
to find relevant patches is called within-variant foraging. In 
both these kinds of foraging, participants used different 
types of cues to lead them to their prey [41]. 

 
Figure 5. Not only can PFIS-V predict navigations that PFIS3 cannot, PFIS-V also does so with a higher accuracy than PFIS3. 
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Between-­variant  foraging:  two  behaviors  
Let us now revisit the two participant groups: the primary 
difference between the two groups of participants is that 
they used different types of cues for their between-variant 
foraging. In order to find a right variant for reuse, Group-1 
participants (2 out of 7) predominantly looked for differ-
ences in the source code between variants, while Group-2 
participants (5 out of 7) exclusively used the variants’ 
timestamp, changelogs or differences in the game’s output. 
In IFT terms, Group-1 participants foraged in source-code 
patches using source-code words as cues, whereas Group-2 
participants foraged extensively in non-source-code patches 
(like output, changelog) and used both textual and non-text-
based (visual) cues. Both groups of participants, then, pri-
marily used words in source-code as cues to locate the right 
patches within the variant (within-variant foraging).  

Ideally, a computational model like PFIS-V should aim to 
model both within- and between-variant foraging of pro-
grammers, irrespective of the types of cues they might use 
or the types of patches they might forage in. Currently, 
PFIS-V can very well model within-variant foraging, where 
participants foraged in source-code patches and used as 
cues words in the source code.  

However, in the case of between-variant foraging, PFIS-V 
modeled the foraging behavior of Group-1 participants 
(who used the text-based source-code words as cues) very 
well, but failed to model non-source-code patches and cues 
(like game’s output), which Group-2 participants heavily 
used. This is because the current state of IFT-based compu-
tational models only account for text-based patches and 
cues in both their data models as well as algorithms. Signif-

icant additional work is needed to investigate accounting 
for non-source-code patches and cue types in IFT-based 
computational models; we leave this for future work. 

Since PFIS-V can only completely model foraging in 
source code patches, using source-code-inspired cues, we 
focus our further evaluation of PFIS-V to such foraging 
behavior, i.e., for Group-1 participants.  

PFIS-­V:  Modeling  foraging  in  source-­code  patches  
Figure 6 compares the average hit rates of the different 
PFIS-V configurations for the two groups of participants. 
The graph for Group 1 shows four distinct lines: the (aver-
age) accuracy of PFIS-V differed across the data models. 
The accuracy of different PFIS-V configurations were as 
follows: variant-­and-­equivalence-­aware(t,t)   >   variant-­and-­
equivalence-­aware(t)  >  variant-­aware  >  variant-­unaware.  

This indicates that the PFIS-V/variant-­and-­equivalence-­
aware(t,t) model was the most accurate model of program-
mers’ foraging behavior, thereby validating the assumptions 
of that data model: (i) participants recognized and were 
aware of the similarities in patches between variants (vari-
ant-awareness), (ii) participants made comparisons between 
similar patches in different variants (equivalence-aware), 
and (iii) they compared similar patches between variants in 
terms of both their content and code structure (t,t). 

The PFIS-V/variant-­and-­equivalence-­aware(t,t) model has 
another advantage too. Table 1 shows the size of the graphs 
for the different data models for the two Group-1 partici-
pants: the size of the graph (number of nodes and edges) for 
the variant-­and-­equivalent-­aware  data models was found to 
be smaller than the other two data models. However, note 

 
Figure 6. While the accuracy of PFIS-V varied with the different data models for Group-1 participants, no such differences 

existed in Group-2 participants. 

Partici-
pant 

Variant-unaware Variant-aware Variant-and-equivalence aware(t) Variant-and-equivalence aware(t,t) 
Patch 
Nodes 

Edges Variant-of 
Edges 

Patch  
Nodes 

Edges Variant-
of Edges 

Patch 
Nodes 

Edges Variant-of 
Edges 

Patch 
Nodes 

Edges Variant-of 
Edges 

P04 276 623 0 276 817 194 261 752 159 263 756 163 
P07 326 821 0 326 2288 1467 218 996 443 291 1780 1032 

Table 1. For Group-1 participants, the graphs for the variant-and-equivalence-aware are smaller  
(lesser number of nodes and edges) than the other data model graphs. 
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that the size of variant-­and-­equivalence-­aware(t,t) was 
slightly larger than variant-­and-­equivalence-­aware(t).  

This result about PFIS-V configurations finds its applica-
tion in tool design: an operationalization of the variant-­and-­
equivalence-­aware(t,t) data model might be a compelling 
option for any tool that supports a large number of variants, 
especially for text-based artifacts (Group-1 situations). The 
smaller memory footprint of this model suggests that a sim-
ilar representation of variants can be space-efficient, while 
the high modeling accuracy implies that the resultant tool 
can better address programmers’ foraging requirements in 
an exploratory programming context.  

The results of our evaluation of PFIS-V thus answers our 
second research question (RQ2) on the effectiveness of 
PFIS-V in predicting navigations: PFIS-V predicted more 
navigations than PFIS3, for all participants. Particularly 
PFIS-V modeled Group-1 participants more accurately in 
both between- and within-foraging scenarios, whereas it 
failed to model the between-variant foraging of Group-2 
participants. These results uncover implications (discussed 
later) for both IFT-based modeling as well as tool design. 

PFIS-­V  factors  
An important aspect of models predicting programmer nav-
igations, such as PFIS, is the predictive factors (heuristics) 
of the model. For example, a recency factor model predicts 
navigations based on how recently the programmer has 
visited that location. Piorkowski et al. identified seven such 
factors (based on prior literature) that can help predict pro-
grammer navigations [32].  

PFIS-V is a multi-factor model: it combines three factors to 
make predictions, while a single-factor model uses only 
one. The three factors in PFIS-V are: (i) recency (did the 
programmer visit the patch recently?), (ii) text similarity, (is 

the patch similar to bug report or current patch?) and (iii) 
source topology (is the patch linked to current patch?). 

PFIS-V combines these component factors by assigning 
them specific weights. The 𝑝 and ∝ in the PFIS-V algo-
rithm in Figure 3 are indeed weights assigned to different 
factors: note that the weights are the same as in PFIS3. 
Studying the predictions made by individual factors can 
provide insights for tuning these weights in PFIS-V, there-
by improving predictive accuracy. To this end, we study the 
predictions for one Group-1 participant (P07), in the vari-
ant-and-equivalence-aware(t,t) configuration (since it yield-
ed highest accuracy, as discussed in RQ2). 

Figure 7(a) compares the hit rates (Y-axis) of PFIS-V with 
its constituent single-factor models. Consistent with Pior-
kowski et al.’s results in single variant situations [32], we 
see that PFIS-V (blue) is a more accurate predictor of pro-
grammer navigations than its constituent single factors. 

To see how each factor contributes to PFIS-V’s accuracy, 
consider a scenario where a programmer navigates to a new 
(earlier unvisited) patch by scrolling to an adjacent method. 
Since the programmer has never navigated to the patch ear-
lier, the recency single-factor model returns “Unknown”. 
However, the source-topology factor that considers adjacent 
patches can predict this navigation. Similarly, in variations 
foraging scenario, the “variant-of” links (source topology) 
or text similarity can predict navigations to similar patches 
in different variants. Thus, when one factor fails to predict, 
another factor fills in the gap and makes a prediction: PFIS-
V can make accurate predictions due to such synergy.  

See Figure 7: for P07, recency yields higher hit rates (which 
is good) as well as has higher unknown rates (a limitation). 
On the other hand, although text similarity and source to-
pology yield lower hit rates, they predict navigations where 

 
Figure 7.  PFIS-V combines three factors (recency, source topology, text similarity): a synergy of these three factors leads 

to better predictive accuracy (higher hit rates (a), lower unknown rates (b)) than that of the individual factors. 
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recency cannot. Thus, no single factor in PFIS-V outper-
forms others in predicting programmer’s navigations. 

Given that a combination of factors in PFIS-V results high-
er predictive accuracy than just individual factors, we esti-
mated the maximum accuracy that can be obtained by com-
bining them: this serves as a benchmark for PFIS-V. We 
did this by computing the predictions made by an optimal 
combination of the three PFIS-V factors. For each attempt-
ed prediction, an optimal combination model yields the best 
prediction made by its component models. For example, if 
the three PFIS-V factors predicted a navigation with ranks 
4, 20 and 30 respectively, their optimal combination model 
returns 4; therefore, at threshold N=10, it yields a hit 
(though only one constituent model yields a hit). 

Figure 7(a)’s grey line shows the hit rates from such an 
optimal combination model (for P07). At threshold N=10, 
the hit rate of the optimal combination model is 60%, while 
that of PFIS-V is 51%. Further, the two models have the 
same unknown rates (Figure 7(b)). The marginal difference 
in hit rates between the two models is an indicator of PFIS-
V’s success, given that the optimal combination model is 
only a theoretical ideal while PFIS-V is a practical model.  

DISCUSSION  

Designing  for  variants  
The presence of variants in large information spaces, such 
as programs, adds additional cognitive load as people have 
to forage for differences among similar variants. Modern 
software tools that represent variants (such as Git, a version 
control system) aim to support this foraging behavior by 
considering the equivalence among variants in their inter-
faces, i.e., these tools minimize cognitive load on users by 
leaving out whatever is similar, and only showing the dif-
ferences between consecutive variants. However, from an 
IFT perspective, there are missing aspects in these tools. 
For example, the navigation affordances in tools that sup-
port variants are constrained, e.g., the absence of links from 
one patch to a similar patch across different variants [5].  

Our model allows researchers and tool builders to evaluate 
hypotheses of programmers’ foraging behavior in their en-
vironment. For example, one can posit that a programmer 
treats a method as different if the method got moved within 
a file. Such a hypothesis can be validated by comparing the 
modeling accuracies of PFIS-V while using text-based and 
text-and-topology-based similarity. 
Our work also has several implications for tools. For exam-
ple, the higher accuracy of variant-aware data models re-
veals the importance of navigation affordances between 
similar patches across variants (“variant-of” links). Similar-
ly, the comparison results of the four data models reveals 
that the variant-and-equivalence-aware(t,t) model makes the 
closest assumptions about programmers’ foraging. There-
fore, tools aiming to support variation foraging can directly 
import this data model as their underlying data structure to 
represent variants. 

Non-­source  code  cues  
Almost all IFT-based predictive models in programming 
thus far only model foraging among source-code patches, 
thereby only considering source-code-word cue types for 
predicting navigation. This is especially true for the PFIS 
family of models. However, our study participants used 
non-source-code patches and cues for their between-variant 
foraging, in exploratory programming scenarios [41]. 

In fact, our evaluations showed that there were two distinct 
types of foragers. Group 1 used source-code cue types and 
PFIS-V was able to accurately model foraging. However, 
Group 2 used non-source code cue types (e.g., output and 
changelogs) during their between-variant foraging, which 
PFIS-V does not capture in its model. This interfered with 
PFIS-V’s ability to model Group 2’s foraging behavior, 
thereby also limiting our ability to harness the model to 
understand (and predict) these programmers’ foraging. 

This reveals a gap in current IFT models—for programming 
as well as other variationed information spaces. For pro-
gramming, modeling only source code cue types is insuffi-
cient in the context of multiple variants. Expanding to other 
types of information patches, such as outputs with visual 
content, mixed-media patches, semantic use of color, etc., 
can lead to significant new thought about comparing vari-
ants. Therefore, IFT-based computational models need to 
be extended to account for such patches. However, compu-
ting similarities and differences between output or test re-
sults patches between variants is a non-trivial problem, let 
alone modeling programmers’ foraging behavior heavily 
involving such visual comparisons, as in our study [41]. We 
consider this to be an important new research opportunity in 
the area of computationally modeling variations foraging.  

CONCLUSION  
In this paper, we present a new computational model (PFIS-
V) to model people’s foraging behavior through an infor-
mation space with variants. Our evaluation shows that 
PFIS-V predicted up to 20% more navigations than PFIS3, 
the latest of the PFIS family of models. Further, PFIS-V’s 
predictions were up to 25% more accurate than PFIS3. 

Such a computational model provides two benefits to HCI: 
researchers can use the model to gather evidence to support 
or refute hypotheses about variations foraging, and the 
model can guide as well as be directly imported to tools. 
Finally, our results point to a challenging open research 
problem for predicting people’s foraging behaviors over 
variationed information space with multiple types of infor-
mation patches. We posit that it is time that IFT-based 
models account for such foraging behavior, which is espe-
cially important in variations foraging situations. 
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