
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Designing PairBuddy – A Conversational Agent for Pair
Programming

PETER ROBE, University of Tulsa
SANDEEP KAUR KUTTAL, University of Tulsa

From automated customer support to virtual assistants, conversational agents have transformed everyday
interactions, yet despite phenomenal progress, no agent exists for programming tasks. To understand the
design space of such an agent, we prototype PairBuddy – an interactive pair programming partner – based on
research from conversational agents, software engineering, education, human-robot interactions, psychology,
and artificial intelligence. We iterated PairBuddy’s design using a series of Wizard-of-Oz studies. Our pilot
study of six programmers showed promising results and provided insights toward PairBuddy’s interface
design. Our second study of fourteen programmers was positively praised across all skill levels. PairBuddy’s
active application of soft skills – adaptability, motivation, and social presence – as a navigator increased
participants’ confidence and trust, while its technical skills – code contributions, just-in-time feedback, and
creativity support – as a driver helped participants realize their own solutions. PairBuddy takes the first step
towards an Alexa-like programming partner.

CCS Concepts: • Human-centered computing→ User studies.

Additional Key Words and Phrases: Conversational agents, pair programming, user centered design, Wizard
of Oz.

ACM Reference Format:
Peter Robe and Sandeep Kaur Kuttal. 2021. Designing PairBuddy – A Conversational Agent for Pair Program-
ming. 1, 1 (September 2021), 36 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Conversational agents allow humans to use natural language to directly interface with computer
agents such as virtual assistants (e.g., Apple’s Siri [189], Google Assistant [190], and Amazon’s Alexa
[188]), customer support agents, or individual/social chatbots (e.g., Mitsuku [167], Cleverbot [166],
and XiaoIce [169]). Conversational agents mimic human conversations, establish more personal
connections, and can even increase accessibility for people with physical disabilities or language
barriers. For businesses, conversational agents personalize customer experience, while bringing
down operational costs. Today, a full two-thirds of the most popular websites use conversational
agents to interact with users and address their needs [165]. Despite the phenomenal penetration of
conversational agents in domains ranging from business to personal use and entertainment, no
conversational agents exist for computer programming tasks.
In this paper, we take the first step towards the creation of “PairBuddy” – a conversational

agent that enables interactive communication between a human programmer and a computer. We

Authors’ addresses: Peter Robe, pjr144@utulsa.edu, University of Tulsa, Tulsa, Oklahoma, 74104; Sandeep Kaur Kuttal,
sandeep-kuttal@utulsa.edu, University of Tulsa, Tulsa, Oklahoma, 74104.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
XXXX-XXXX/2021/9-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: September 2021.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

2 Robe, et al.

Fig. 1. Tiana interacting with PairBuddy.

designed PairBuddy to promote effective programming by using “pair programming,” an established
collaboration technique used in education and the industry.

In pair programming, two programmers work collaboratively on the same design, algorithm, code,
or test [143, 200, 201]. Programmers switch between the roles of driver (writing code) and navigator
(making suggestions). Pair programming provides a variety of benefits, including increased code
quality, productivity, creativity, knowledge management, and self-efficacy [20, 33, 40, 47, 51, 98,
124, 125, 143, 152, 156, 197, 200–202, 216]. It even has the potential to reduce gender prejudice by
encouraging women to pursue computer science [197]. Pair programming increases programmers’
contemporary skills, understanding of fundamental concepts, and intellectual pursuits [33, 124,
152, 156, 197]. However, pair programming has certain limitations including scheduling difficulties,
collocating pairs, student resistance to pairing, and the dependency on a partner’s programming
abilities [68, 82, 139, 199]. We conjecture that PairBuddy’s design will promote the benefits of pair
programming while reducing its limitations.

1.1 Motivational Scenario
To motivate the need and inform the abilities of PairBuddy, we provide the following scenario:

Tiana is a junior CS student who enjoys pair programming, but due COVID-19, she has to return
home. Given the physical and time-zone differences, scheduling pair programming sessions is hard.
Additionally, all of her potential partners either like to work solo, have incompatible cognitive styles,
criticize without providing solutions (e.g., “We definitely cannot finish this”), are overly competitive,
take credit for Tiana’s work, or have other problematic habits. As a result, their sessions with Tiana
are stressful and unproductive, resulting in the loss of pair programming’s benefits. Fortunately,
Tiana can use PairBuddy (Figure 1).

Tiana can collaborate with PairBuddy, switching between the roles of driver and navigator to
create test cases, write code, and refactor code. Additionally, PairBuddy: 1) is unbiased toward
Tiana’s gender, ethnicity, and socio-economic status; 2) motivates and encourages her hard work;
3) gives non-judgemental feedback, allowing Tiana to ignore or disagree without the risk of hurt
feelings; 4) provides a sense of security through its active listening and engagement through both
voice and text; 5) encourages and instills healthy problem-solving and creative styles; and 6) avoids
dominating power dynamics by balancing pair programming roles. For these reasons and more,
Tiana prefers PairBuddy as her programming partner to complete difficult assignments comfortably
and effectively.

1.2 Challenges
Since no pair programming conversational agents exist, the challenges of creating such an agent
include:

, Vol. 1, No. 1, Article . Publication date: September 2021.

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

Designing PairBuddy – A Conversational Agent for Pair Programming 3

(1) AnUnknownDesign – Interface and Interactions: PairBuddy’s interface and interaction
design must be explored due to the unique properties of pair programming dialogue [151]. To
support programmer-computer interaction, PairBuddy must imitate an effective programmer
by integrating a multitude of technical and soft skills, including diverse problem-solving and
creative strategies. Therefore, PairBuddy’s design must be informed from multi-disciplinary
research.

(2) A Specific Domain – Software Development: PairBuddy needs to be created for the spe-
cific domain of software development, which remains relatively unexplored by conversational
agent research. Developing software is unique, as it demands the synthesis of requirements;
the generation and development of solutions; and the implementation, testing and refactoring
of code. Therefore, pre-existing conversational agents cannot be directly modified for pro-
gramming, and instead, a new paradigm must emerge to support programmer collaboration
with an agent. This shift in approach must be informed from software engineering and
education. Specifically, we consider literature on Intelligent Tutoring Systems to integrate
the programming and educational aspects of pair programming.

(3) A Specific Userbase – Programmers:
Programmers are a unique population that have yet to be studied in the realm of conversational
agents. From students to professionals, programmers’ experiences are diverse; some may
use agents to learn programming concepts, while others may develop those same agents. To
design PairBuddy for both populations, we must conduct user studies to fully understand the
breadth of expectations, preferences, and needs of programmers.

These challenges necessitate a review of existing research on human-computer interactions, human-
robotic interactions, software engineering, conversational agents, artificial intelligence, intelligent
tutoring systems, education, psychology, cognitive science, and management science to inform the
design of PairBuddy.

2 WIZARD OF OZ STUDIES
Due to the limited available research on pair programming conversational agents, we used an
iterative approach to understand and design PairBuddy through a series of twoWizard of Oz studies
with programmers.

In a Wizard of Oz study, participants interact with an agent whose actions are secretly controlled
by a human “wizard.” Wizard of Oz is a rapid-prototyping method that examines interfaces that are
technically demanding or are yet to be created [76]. It helps develop user-friendly interfaces that
promote natural language dialogue, consider the unique qualities of human-agent interaction as
distinct from normal human discourse [45], and study user interactions with conversational agents
[22, 25, 195]. Wizard of Oz efficiently creates the functionality of a product before it is refined via
testing [110, 203].

Choosing Wizard of Oz studies helps us investigate the design space of PairBuddy before starting
the implementation, as creating a fully functional conversational agent requires: 1) understanding
the domain of pair programming conversational agents, 2) collecting pair programming data used
to train the machine learning models of such an agent, and 3) designing and implementing a
custom conversational agent architecture including the application of multiple machine-learning
algorithms [69]. Additionally, platforms for developing conversational agents such as IBM Watson
Assistant [191], SAP Conversational AI [168], and Oracle Digital Assistant [192] cannot be used
due to their focus on simple/basic enterprise problems such as answering questions and solving
tasks based on web or enterprise data.

, Vol. 1, No. 1, Article . Publication date: September 2021.

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

4 Robe, et al.

In the words of human-computer interaction expert Jef Raskin, “Once the product’s task is known,
design the interface first; then implement to the interface design.” Therefore, we used the Wizard of Oz
paradigm to simulate PairBuddy’s interface and interactions as we explored the design space of pair
programming conversational agents. For the remainder of this paper, we use the term “PairBuddy”
to refer to “the wizard’s simulation of PairBuddy.”

Our user-centered approach involved the exploration and evaluation of PairBuddy’s design using
two iterations of Wizard of Oz studies with programmers. For the first iteration, we conducted an
exploratory pilot study with six university students focused on the initial design of PairBuddy’s
interface and interactions. For the second iteration, a larger study of fourteen university students
and professional programmers evaluated a variety of design decisions informed from the pilot
study and existing research.

3 PILOT STUDY (ITERATION 1)
The pilot study provided valuable feedback from programmers for the initial design of PairBuddy.
The insights gathered from the pilot study served as a first step toward the exploration of the design
space of pair programming conversational agents as well as a starting point for future iterations.

3.1 PairBuddy Design (Iteration 1)
PairBuddy’s initial iteration primarily served to study its interface and interaction design, so we
focused our research review on literature that pertained to agent design, human-robotic interactions,
embodiment, software engineering, management science, intelligent tutoring systems, education,
cognitive science, psychology, and gender-bias in agent design. Table 1 lists the design decisions
made for PairBuddy’s interactions and features in the pilot study, and are as follows:

Design: Creating the Interface and Interactions
PairBuddy was designed to include anthropomorphic characteristics in its interface and interac-

tions.
(A) Interface – Embodiment via Avatar, Gender, Voice, and Text:

PairBuddy communicated with participants by means of avatar, voice, and text to enhance
human-computer interaction. An avatar was incorporated in the design because avatars make
the interface more human [179] and improve understanding, engagement, and trust in novice
programmers [119, 179, 209]. Furthermore, embodiment through avatars can facilitate non-verbal
communication in order [19, 32] to help maintain effective pair programming relationships. Agents
with avatars are given more personality attributes than those without them [179], but at the cost of
heightened expectations [119]. They are particularly important to establishing first impressions
[21]. Therefore, we formulated design decision F1: PairBuddy will be embodied by a 3D avatar.
The inevitable gendered attributes spawned from conversational agent embodiment are the

target of similar gender-biases present in the real world. Particularly, female conversational agents
are more often the target of negative stereotypes, sexual attention, and profanities than male
agents [26]. However, they’re also more likely to be forgiven, even if satisfaction ultimately doesn’t
change [184]. Additionally, female programmers have voiced concerns about pair programming
with male partners [38] due to the expectation of being stereotyped for their gender. To analyze
potential gender preferences and bias, we formulated design decision F2: Participants can toggle
the agent between the two most common genders. While research has looked at gender bias within
conversational agents and pair programming separately, we combine the analysis by evaluating
participants’ gender preferences for a pair programming conversational agent.
The choice between voice or text for an agent’s interface depends on the use case. While text-

only interfaces are less intrusive (e.g., website support), research [21, 31] has shown that voice

, Vol. 1, No. 1, Article . Publication date: September 2021.

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

Designing PairBuddy – A Conversational Agent for Pair Programming 5

interfaces increase users’ trust in conversational agents. Additionally, cognitive science research
has demonstrated that simultaneously sharing the same sensory modality for both short-term
memory and active-use negatively affects response and accuracy rates under high-load conditions
[187]. These findings suggests that using audio responses can help reduce programmers’ cognitive
load since it does not share the same sensory modality as viewing code. Additionally, the absence
of a text chat saves additional screen space and reduces context switching between applications.
For our design decisions F3 and F4, we explored input modality by supporting both methods of
communication, allowing messages to arrive to/from the agent via both voice and text.
(B) Interactions – Indirect Driving, Timed Feedback, and Adapted Skill:

In effective pair programming, both partners directly contribute to the code as drivers. However,
if PairBuddy makes a mistake and overwrites code, it could become difficult for participants to undo.
Since a prominent principle of HCI is that users should remain in control of their work [7, 14, 204],
we formulated design decision I1: As a driver, PairBuddy will make indirect contributions through
text messages so that participants can reference and modify the code themselves.
Feedback has substantial impact on learning and achievement [85, 86, 104, 114]. Among its

influential properties is the timing of the feedback. Psychological research suggests that feedback
on difficult concepts should be delayed, while feedback on simple concepts is more beneficial
when immediate [24, 107, 159, 181, 182]. For example, interactive development environments (IDEs)
already provide instant feedback via error highlighting, but when a programmer uses a misguided
approach, delayed feedback is preferred to allow them time to evaluate the feasibility of their ideas.
Therefore, we formulated design decision I2: PairBuddy will provide timed feedback [14]. With
this decision, we hope to minimize unnecessary interruptions.

To balance pair programming roles, PairBuddy would adapt to each participant’s skill-level. Just
as PairBuddy seeks to replace a human pair programming partner, Intelligent Tutoring Systems
(ITS) look to elicit the same effects as a human tutor [43, 59, 186]. ITSs have shown to increase
student performance, and can even outperform human tutoring [180]. Like PairBuddy, Vizcaino et
al. [193] designed HABIPRO, a simulated student and co-learner, to teach computer science. While
HABIPRO did not pair program, it guided students’ behavior by utilizing a learner model [35] to
represent and track students’ knowledge and progress. In the same way that ITSs adapt to learners’
knowledge, we formulated design decision I3: PairBuddy’s skill level will adapt to each participant
such that contributions remain balanced [14]. Pair programming research informs this decision
since programmers prefer when their partner is equally or more competent [128].

Programmer: Integrating Technical and Soft Skills
PairBuddy will imitate the characteristics of a programmer. Programmers’ technical and soft

skills are crucial for being effective team members [10, 44, 137, 214] and are used by managers to
make hiring decisions [118, 122, 132, 157, 164]. Hence, we integrated both types of skills to reflect
a programmer’s capabilities.
(A) Soft Skills – Greeting and Motivation:

While greetings vary between cultures, humans introduce themselves to make their presence
known and to start conversations. Similarly for agents, Kahn et al. [97] identifies “The Initial
Introduction” design pattern where agents use scripted, conventional introductions to recognize
and inquire about another. It is an important design choice in human-robotic interaction, as it
allows a deepening of relationships while removing initial awkwardness. Based on this researched
design pattern, we formulated design decision S1: PairBuddy will introduce itself and greet the
participant [14].

Motivation is seen as a driving force that has a substantial impact on a programmer’s performance
and productivity [13, 34], and comes from either intrinsic or extrinsic sources [34, 49]. Designing

, Vol. 1, No. 1, Article . Publication date: September 2021.

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

6 Robe, et al.

Table 1. Design decisions evaluated in the pilot study.

ID Design Decision Description Example Sources
Interface

F1 Avatar Embodied by a dynamic 3D avatar [19, 21, 32, 119, 179, 209]
F2 Gender Gender can be toggled [26, 38, 184]
F3 Voice Communicate via voice synthesis [21, 31, 187]
F4 Text Chat Communicate via shared text chat
Interaction

I1 Indirect Driving Send code via text chat [7, 14, 204]
I2 Timed Feedback Feedback at appropriate time [24, 104, 107, 114, 159]
I3 Adapted Skill Balance contributions with partner [14, 43, 59, 186, 193]
Soft Skills

S1 Greeting Introduce itself [97]
S2 Motivation Encourage, recognize, comfort, commend [13, 34, 49, 63]
Technical Skills

T1 Write/Feedback Tests Generate test cases & feedback [12, 58, 126, 127, 131, 147]
T2 Write Code Examples from online repositories [100, 101, 136, 145]
T3 Guidance Provide direction via user stories

extrinsic motivators that synergize with intrinsic motivators requires supporting a person’s sense
of competence without undermining their self-determination [13]. Fischer et al. [63] found that a
higher perceived probability of receiving extrinsic motivation in the form of relational rewards (e.g.,
praise, recognition, performance feedback) [16] often positively affected creative and innovative
outcomes. Therefore, we formulated design decision S2: PairBuddy will motivate using relational
rewards in the form of encouragement (e.g., “We’ve got this!”), recognition (e.g., “I see, good idea!”),
and comforting (e.g., “That’s okay, everyone makes mistakes”). Additionally, extrinsic motivation is
most effective during the stages of the creative process that make the most meaningful contributions
to the project [13]. Therefore, PairBuddy will commend success through relational rewards such as,
“I knew we could do it!” or “We make a great team!”.
(B) Technical Skills – Writing Tests/Code and Giving Guidance:

PairBuddy can generate test cases (i.e., a code fragment that specifies inputs and expected results
to verify compliance with a requirement [1]) using search-based techniques and requirement arti-
facts. Search-based software testing uses a variety of search algorithms [126, 127, 131] to determine
the most efficient path through source code that maximizes code coverage for automatic test case
generation [12]. Additionally, research has demonstrated the feasibility of converting requirement
artifacts such as user stories (i.e., a description of a requirement from a user’s perspective [2]),
acceptance criteria (i.e., the boundaries of a user story [1]), and scenarios (i.e., step-by-step de-
scription of a series of events [1]) into test cases [58, 147]. Based on this research, we formulated
design decision T1: As a driver, PairBuddy can generate test cases automatically. As a navigator,
PairBuddy can give feedback and answer programmers’ queries based on the generated solutions.
For example, PairBuddy could offer help by asking, “Would you like me to generate a test case?”
To further PairBuddy’s competency as a driver, we formulated design decision T2: PairBuddy

will provide example code from online repositories (e.g., GitHub [3]), question & answer forums
(e.g., Stack Overflow [6]), and package documentation. For example, PairBuddy might send sample

, Vol. 1, No. 1, Article . Publication date: September 2021.

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

Designing PairBuddy – A Conversational Agent for Pair Programming 7

Fig. 2. The pilot study’s interface including the Eclipse IDE, text chat, and avatar. Note that each participant
only saw one avatar.

code from GitHub into the text chat and ask, “Is this code example from online useful?” Code-
querying and semantic similarity algorithms allow for the collection and querying of online code
repositories. Past research [100, 101, 136, 145] identifies techniques to search online repositories
for semantically similar code. However, these algorithms are not always perfect, so to simulate a
realistic implementation, PairBuddy’s code recommendations were not an exact match with the
task.
To allow PairBuddy to guide participants, we formulated design decision T3: PairBuddy will

use user stories as a basis to track and direct the current objective, encouraging participants to
reference them when determining how to proceed. Additionally, PairBuddy might need to ask
the participant, “What user story is that?” when the current objective is unclear from PairBuddy’s
perspective. This clarifying dialogue serves a second purpose: participants are forced to refocus on
the user stories, and reorient themselves toward the task’s goal.

3.2 Wizard/PairBuddy Implementation
The wizard’s interface and implementation integrated the aforementioned design decisions into
the wizard’s script and interface for the pilot study, and are detailed as follows:

PairBuddy’s interfacewas implementedwithin the Eclipse IDE [54] using amodified version of the
Saros plugin [56], allowing both voice and text communication. Directly integrating these features
allowed participants to seamlessly interact with PairBuddy. The wizard used Saros to monitor the
participant’s code, but made code contributions via the text chat. PairBuddy was embodied by a 3D
avatar via FACSvatar [60]. Using custom networking code, FACSvatar mapped the wizard’s facial
animations onto PairBuddy’s avatar from a remote location, while PairBuddy’s voice was generated
using Google Text-to-Speech [80]. The wizard secretly monitored the participant’s webcam and
microphone using FFmpeg [62]. While participants were free to change the arrangement of the IDE
and avatar windows, none of them did. Figure 2 shows a screenshot of the participant’s interface,
including the Eclipse IDE and either the man or woman avatar.
The wizard also simulated the back end design of PairBuddy, including common components

of conversational agent architecture [69] such as intent classification [9, 53, 116, 123, 146, 207],
dialogue state tracking [102, 111, 150, 215], dialogue policy [88, 183, 205, 211], and natural language
generation [81, 149]. For example, if the participant said, “This is why I hate coding!”, PairBuddy

, Vol. 1, No. 1, Article . Publication date: September 2021.

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

8 Robe, et al.

Table 2. Demographics of the pilot study participants.

P# Age Gender Education Programming Experience
PG1 24-29 Man PhD 4+ years
PG2 30-40 Man PhD 4+ years
PG3 24-29 Man Masters 4+ years
PU4 19-23 Man Undergrad <1 year
PU5 19-23 Woman Undergrad <1 year
PU6 19 Man Undergrad <1 year

would understand their words using text-to-speech, classify the intent as “Negative Feedback,”
and log their difficulties in the dialogue state tracker. In response, PairBuddy would decide to
“Give Motivation” based on its dialogue policy, and respond with “Don’t give up, you are almost
there!” using natural language generation. The wizard adhered to a script, which served to simulate
the robotic nature of conversational agents, and contained a limited selection of dialogue for the
wizard to use. Dialogue was templated according to Shneiderman’s guidelines [163] and Neilsen’s
heuristics [135]. Since communication styles differ by gender [108], we provide gender-inclusive
language [61, 130] in our script including non-authoritative suggestions [161] to both engage and
motivate programmers.

The wizard exhibited a realistic level of intelligence. If participants asked questions beyond the
protocol, the wizard answered, “I’m afraid logic isn’t my strong suit,” to simulate the behavior of
a potentially automated system [14]. However, to maintain participants’ trust and engagement,
we designed PairBuddy to give alternative contributions if it could not directly answer queries.
Furthermore, the script was designed to vary the responses for the same intent. For example,
motivational scripts included, “We’ve got this!” along with five or more such dialogue templates so
participants wouldn’t receive repeated phrases from PairBuddy. In general, the script served to
simulate the back end of a fully functional conversational agent, including its limitations through
the use of dialogue templates. One researcher simulated PairBuddy as the wizard in the pilot study.

3.3 Participants
Seven students majoring in computer science were recruited from our university. However, we
only report data from 6 participants (3 undergraduate and 3 graduate) as one participant did
not interact with PairBuddy during the study. Both undergraduate and graduate students were
selected for the study to account for the varying diversity of programming skill. Participants with
basic object-oriented programming experience were chosen on a first-come-first-serve basis. Upon
completion, participants were given $20 in Amazon gift cards. Table 2 shows the demographics of
our pilot study participants. These participants are referred to as PU# and PG# for undergraduate
and graduate students respectively. For example, PU4 is the fourth undergraduate participant of
the pilot study.

3.4 Study Design
Participants completed a background questionnaire prior to the pilot study. Before starting the
task, participants watched video tutorials on the concepts used in the study including the driver
and navigator pair programming roles, the think-aloud method, and test-driven development. The
think-aloud method encourages participants to vocalize their thoughts and feelings [113, 160].
Test-driven development is a type of extreme programming that prioritizes the creation of test
cases before implementing and refactoring code. Test-driven development evaluates participants’

, Vol. 1, No. 1, Article . Publication date: September 2021.

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

Designing PairBuddy – A Conversational Agent for Pair Programming 9

knowledge and enables diverse dialogue since each development stage provides a unique style of
thinking.
Participants were asked to use pair programming and test-driven development alongside Pair-

Buddy to complete an implementation of tic-tac-toe: a game where two players take turns marking
spaces in a 3x3 board. Code for the board, along with three related test cases, were provided to
the participants. Tic-tac-toe was selected for its simplicity, as anyone with basic programming
experience could understand and implement solutions to the requirements without prior knowledge
of the domain.
Participants were then instructed to create new test cases and functionality based on a given

list of user stories, acceptance criteria, and scenarios. Participants wrote Java code in the Eclipse
IDE [54] using JUnit [55] to implement testing. The duration of the task was fixed to 50 minutes
to prevent participants from fatigue and to ensure that the entire study session lasted under 90
minutes.

A semi-structured interview was conducted using a script, and individualized questions explored
study-specific events.

3.5 Data Analysis
The video, audio, and interviews from the pilot study were transcribed and analyzed qualitatively to
evaluate the usability of PairBuddy. We used grounded theory [74] to create a codeset of the types
of contributions PairBuddy made as is shown in Table 3. Transcripts were coded by two researchers.
Initially, both researchers independently coded the same 20% of the transcripts, and average inter-
rater reliability was measured at 86% using the Jaccard index. The remaining transcripts were split
and coded separately. Interview transcripts for the pilot study can be found [4].

3.6 Results
The first iteration of PairBuddy allowed us to examine the feasibility of a pair programming
conversational agent. The insights and avenues for improvement are as follows:

(1) Helping Programmers
PairBuddy helped participants complete the programming task as both a driver and a navigator.

Figure 3 details the contributions PairBuddy made in three separate ways: 1) PairBuddy offered

Table 3. Code set for PairBuddy’s contributions.

Contribution Type Description Example

Direction Guiding participants towards goals “Write a method... for a horizontal win.”
Domain - Help IDE, language, or domain knowledge “Looks like... an import error for JUnit.”
Method - Add Provide example code for methods “Is this code... useful?”
Method - Clarify Give knowledge about methods “Get the value... by accessing its coordinate.”
Test case - Add Provide example code for test cases “I can generate test cases.”
Test case - Clarify Give knowledge about test cases “To test... we will need to place marks.”
Bug - Identify Identify bugs or mistakes “Double check the vertical check.”
Bug - Fix Fix bugs or mistakes “Error is commonly caused by...”

Contribution Source Description

PairBuddy Alone PairBuddy offered contributions
Human Asked Participants prompted PairBuddy
Human Asked - Unanswered PairBuddy couldn’t help programmer

, Vol. 1, No. 1, Article . Publication date: September 2021.

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

10 Robe, et al.

help, 2) participants asked for help, and 3) participants asked, but PairBuddy could not provide
help. The contributions types include: direction, domain-related help, method/test clarification,
method/test addition, and bug identification/fixing.
When participants were lost, PairBuddy provided direction through its messages. For example,

when PU6 had difficulty writing a method, PairBuddy gave guidance, “We need to write a method
to check for a horizontal win.” Furthermore, PairBuddy provided help for questions about the IDE,
JUnit, language, and domain (tic-tac-toe). For example, when PG3 was having difficulties using the
testing suite (JUnit), PairBuddy provided help, “It looks like we may have an import error for JUnit.”

PairBuddy contributed knowledge by clarifying test cases and methods. For example, when PU4
was unsure about how to write a test case, PairBuddy responded, “To test for horizontal, we will
need to place marks at zero zero, one zero, and two zero.” Similarly, PairBuddy helped PU5 with her
method, “If a space is occupied by a ‘-’ then it is considered empty.”

PairBuddy provided sample code for test cases or methods in the text chat. For instance, PairBuddy
offered to contribute a test case for PG6, “I can generate test cases based on the user scenarios. Would
you like me to do this?”, and a method for PG1, “Does this code help you out any?”

Finally, PairBuddy provided guidance for finding and fixing bugs. When PG1 made a mistake in
the vertical win method, PairBuddy commented, “I think there is a syntax error on line 41.”
Periodically, PairBuddy failed to answer the questions asked by participants (red in Figure 3).

However, PairBuddy was designed to follow-up with separate contributions if possible (blue in
Figure 3). For example, when PU5 asked, “What would the arguments be for the method to find if
there is a winner?”, PairBuddy was not designed to answer this difficult type of question, so instead,
it made a suggestion from online, “Is this code example from online useful?”
(2) Effect of Programming Experience

Figure 3 shows the trend that graduate students (PG1 - PG3) interacted with PairBuddy during the
second half of the study, while undergraduate students (PU4 - PU6) interacted from the beginning.
One graduate student, PG1, interacted from the start, but PG2 and PG3’s first interactions were
at 19:00 minutes and 17:30 minutes respectively. In his interview, PG2 said that he wanted help
just-in-time and preferred to work solo on his tasks, “I was thinking, and I want to have time for...
quiet and focus.” We conjecture that experienced participants were less trusting initially, but their
trust increased overtime. For example, PG3 said, “As it went on, I was like, ‘Hey,... we have the same
idea for this.’ ”

Fig. 3. A timeline illustrating PairBuddy’s contributions during the pilot study. Contributions were either
offered by PairBuddy (blue) or asked by participants (yellow). In some instances, PairBuddy was unable to
provide help (red). Contributions types include direction, domain-related help, method/test case addition,
method/test case clarification, and bug identification/fixing.

, Vol. 1, No. 1, Article . Publication date: September 2021.

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Designing PairBuddy – A Conversational Agent for Pair Programming 11

(3) User Experience
Participants enjoyed working with PairBuddy and appreciated its company. PG2 found Pair-

Buddy’s voice supportive, saying, “Just hearing him talk helped me stay on track and stay focused on
the task at hand and what needs to be done.” Similarly, PU5 indicated that she often thinks out-loud
with a partner in her classes, explaining, “I’ll like talk, ‘I don’t know what I’m doing,’ and [my friend]
will be like, ‘I don’t either.’ ” Additionally, PG3 felt synergy with PairBuddy, commenting, “I think
we work together well.”

Participants also enjoyed the motivational aspect of PairBuddy. In fact, all participants responded
positively to motivation. For example, when PG1 fixed a bug that he was struggling with, PairBuddy
celebrated saying, “Yay! You did it!”, and PG1 smiled responding, “Thanks!” Similarly, PU6 said,
“Thank you so much dude. Your motivation is so good. Thank you, thank you, your motivation is getting
me through.” However, participants’ reactions to positive feedback varied, as PG2 only said, “Okay
thanks.”

3.7 Lessons Learned
Feedback from the pilot study revealed many shortcomings of PairBuddy’s design and informed
modifications to the original design decisions for use in the main study. We found the following
limitations of both PairBuddy’s design and the study’s implementation:

Avatar Did Not Support Lip-Sync: Participants rarely looked at the avatar window throughout
the study. PU6 put it bluntly, “I forgot he [the avatar] was even there.” While the avatar often went
unused, PU4 noted that avatars play a specific role in communication for him, “I’m actually hard
of hearing just a little bit, but I take cues, at least for certain words, I take cues from reading lips,
so [lip-sync] would actually help me a lot.” Additionally, research finds that lip-synchronization
heightens the level of an avatar’s embodiment [75]. However, in the pilot study, PairBuddy did not
include a lip-sync feature, making communication less accessible and embodiment weaker.

Gender Toggle wasNot Utilized by Participants:All six participants never changed the gender
of the avatar, which limited our ability to make any explicit determinations for participants’ gender
preferences. Additionally, the style of interaction between genders was indiscernible due to the low
participant count, causing individual differences to out-shine gender-based differences. To gather
relevant gender data, we must use an approach that can discern individual gender preferences.

Participants’ Bias Toward Text: When given the option to use either voice or text to message
the agent, participants initially felt more comfortable using text and often forgot that voice was
even an option. In fact, 5/6 participants used text rather than voice. However, when PU6 was
accustomed to typing messages, he was taken off-guard when PairBuddy responded to his voice,
“Wait, can you hear me? That would be kinda cool if you can hear me.” Participants who used text
forgot PairBuddy could hear them, often verbalizing their message before typing it into the chat.
For example, PG1 spoke out loud, “How to write the method?” before sending it word-for-word
in the text chat. The inclination to vocalize questions suggests that the decision to use text over
voice was partially based on preconceptions and habits, rather than utility. While participants were
biased toward text, they spent an unnecessary amount of time typing messages. This notion of
slow text communication is supported by research on interaction speed [155], which finds that
typing is 3x slower than voice recognition (on mobile devices).

Participants Needed More Guidance: Although we envisioned PairBuddy to act as both a
driver and a navigator, design decision T2 transformed PairBuddy’s role as a driver into a code
recommendation system. Since PairBuddy couldn’t directly contribute to the code, its ability to
meaningfully guide progress was limited.

, Vol. 1, No. 1, Article . Publication date: September 2021.

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

12 Robe, et al.

Fig. 4. Creativity stages (blue) progress from Clarify to Implement, but humans skipped the Idea and
Develop stages (dashed arrows) when PairBuddy provided answers (code/test cases). Typically, human-
human pairs progress through each stage in succession (solid arrows).

Interjections Become InterruptionsWhile participants generally appreciated when PairBuddy
interjected with helpful dialogue, they did not like it when interjections became interruptions.
Even with PairBuddy’s timed feedback (design decision I2), participants wished PairBuddy did not
disrupt their train of thought. PG2 explained, “When I’m trying to think about a problem... Most of
the time I need a quiet place to think.” Similarly, PG1 complained, “Some of the things were distracting
to me and unexpected... That I didn’t like.” While research finds that interruptions greatly reduce
progress on writing assignments [64], our participants still wanted an agent that is engaging and
socially present. PG3 expressed his preferences, “I would prefer someone who is more engaged,” and
PU5 did too, “I don’t feel as crazy or lonely because it’s like ‘Oh, I’m talking to a computer. It’s fine,’
but like when you’re doing it alone it’s like, ‘Ah, there’s no one here.’ ”

Lack of Support for Creativity: Upon analyzing the transcripts, we realized that participants
followed creative strategies as identified in the Osborn-Parnes Creative Problem Solving Process.
Osborn-Parnes Creativity is frequently used to understand the creative process of an individual
[89, 99, 140, 142] and is vital to programmer success [57, 194, 212], especially when solving open-
ended problems [18, 28, 112, 117, 144, 198]. Particularly, it describes how programmers step through
a series of creativity stages. Figure 4 illustrates how programmers start at the Clarify stage of
creativity, where information, goals, and challenges are identified. In the subsequent Idea stage,
ideas regarding how to solve the challenge are generated. Then, in the Develop stage, solutions are
evaluated, strengthened, and selected for “best fit.” Finally, in the Implement stage, the resulting
solutions are written into code. In human-human pair programming, humans follow the creativity
stages in sequence [109] (solid arrows in Figure 4). However, we observed that participants skipped
the Idea and Develop stage by directly copying implementation from PairBuddy’s code examples
(dashed arrows in Figure 4). Therefore, PairBuddy should support each individual creativity stage,
specifically the skipped stages of Idea and Develop.

4 MAIN STUDY (ITERATION 2)
Through the insights gained from the pilot study and a more comprehensive research review, we
improved the design of PairBuddy and conducted a second “main” Wizard of Oz study.

4.1 PairBuddy Design (Iteration 2)
The design of PairBuddy for the main study intended to imitate human pair programming to the
highest degree that can be realistically achieved through the capabilities of current research. Table
4 lists the design decisions used in the main study. Those adapted from the pilot study remain
white, while new design decisions are highlighted in blue. Design decision modified or added for
the main study are as follows:

, Vol. 1, No. 1, Article . Publication date: September 2021.

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

Designing PairBuddy – A Conversational Agent for Pair Programming 13

Design: Creating the Interface and Interactions
(A) Interface – Embodiment via Avatar, Gender, Voice, and Text

For design decision F1, PairBuddy’s dynamic 3D avatarwasmodified to include lip-synchronization.
Furthermore, to explore the trade-offs of using text vs. voice for a pair programming agent, we
modified design decisions F3 and F4: communication with PairBuddy will be primarily verbal,
while reserving the text chat for resources such as images or links. This decision attempted to
model typical human-human remote communication.
(B) Interactions – Direct Driving, Timed Feedback, Adapted Skill, Typing Speed, and Redi-
rect Suggestions
To allow PairBuddy to more effectively guide code progress as an active driver, we modified

design decision I1: PairBuddy will make direct code contributions through the IDE rather than
sending code snippets through the text chat, and as an active navigator, PairBuddy will provide
more specific feedback. To support PairBuddy’s heightened engagement, we conducted a research
review of automated code and feedback generation algorithms. Since algorithms are prone to
mistakes, PairBuddy did not overwrite large chunks of participants’ code, and instead, commented
them out.
Since PairBuddy directly contributed code through the IDE, it was necessary to consider the

speed at which PairBuddy typed. Intentionally limiting an agent’s typing speed might be unap-
pealing and cause programmers to become impatient, but pasting large chunks of code might be
too overwhelming to comprehend. Therefore, we formulated design decision I4: PairBuddy will
incrementally paste small snippets of code to prevent programmers from becoming impatient or
overwhelmed. This design decision was informed from our best reasoning rather than previous
research.

In pair programming, the role of the navigator includes providing feedback and suggestions to the
driver. Sometimes, the navigator performs “backseat driving” where they instruct the driver directly
[94]. However, current technology does not fully support the implementation of arbitrary ideas in
this way, so in the pilot study, PairBuddy was designed to immediately admit its limitations saying,
“I’m sorry, I don’t know how to help with this.” Unfortunately, this design decision often marked an
abrupt end to the conversation. Therefore, to encourage higher engagement, we formulated design
decision I5: PairBuddy will redirect suggestions back to the programmer through dialogue such as
“How would that look like?”, “Do you want to try?”, or “Can you do that for me?”. If the programmer
insists, however, only then will PairBuddy admit its limitations.

Programmer: Integrating Technical and Soft Skills
(A) Soft Skills – Leadership, Uncertainty, Social Presence

Research finds that a democratic leadership style is most effective for pair programming [108]. A
way for PairBuddy to integrate democratic leadership is to practice effective pronoun use. Research
has shown that leaders use collective pronouns (e.g., “we” and “us”) to gain influence in a group
[96], but use personal pronouns (e.g., “I” and “me”) to “own up” to mistakes [148]. Therefore, we
formulated design decision S3: PairBuddy will display leadership by attributing successes to the
group while taking ownership for its mistakes. For example, when a test case fails, PairBuddy will
take ownership, saying, “I think I made a mistake,” but if all the test cases pass, PairBuddy might
say, “Great, we did it!”

Research suggests that conversational agents should preemptively use uncertainty to avoid cases
where agents make large miscommunications [14, 17], and the resulting conversational breakdowns
decrease users’ satisfaction, trust, and willingness to continue talking to conversational agents
[90, 91, 120]. Additionally, research on pair programming shows that people often ask for verification

, Vol. 1, No. 1, Article . Publication date: September 2021.

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

14 Robe, et al.

Table 4. Design decisions of PairBuddy’s main study implementation. Decisions modified from the pilot
study remain white, while new additions are highlighted in blue.

ID Design Decision Description Example Sources
Interface

F1 Avatar Embodied by a 3D lip-synced avatar [19, 21, 32, 119, 179, 209]
F2 Gender Gender can be toggled [26, 38, 184]
F3 Voice Communicate via voice synthesis [21, 31, 187]
F4 Text Chat Paste images or links
Interactions

I1 Direct Driving Edit code via IDE
I2 Timed Feedback Feedback at appropriate time [24, 104, 107, 114, 159]
I3 Adapted Skill Balance contributions with partner [14, 43, 59, 186, 193]
I4 Typing Speed Paste small sections of code
I5 Redirect Suggestions Participants implement their suggestions
Soft Skills

S1 Greeting Introduce itself [97]
S2 Motivation Encourage, recognize, comfort, commend [13, 34, 49, 63]
S3 I vs. We Share success and personalize mistakes [96, 148]
S4 Uncertain/Verification Show uncertainty via verification of work [17, 108]
S5 Social Presence Actively listen rather than interrupt [41, 64, 84, 134]
Technical Skills

T1 Write/Feedback Tests Generate test cases & feedback [12, 58, 126, 127, 131, 147]
T2 Write/Feedback Code Generate code & feedback [46, 100, 101, 136, 145, 213]
T3 Guidance Provide direction via user stories
T4 Creativity Support Prompt divergent & convergent thinking [92, 93]
T5 Feature Location Locate code from a description [115, 121, 158]
T6 Unnecessary Code Suggest deleting unused code [178]
T7 Missing Code Determine where more code is needed [73]

after each creative stage of development [108]. Therefore, we formulated design guideline S4:
PairBuddy will convey uncertainty by asking for verification in order to prevent conversational
breakdown. To potentially support this, the uncertainty of the PairBuddy’s dialogue could be based
on the confidence of the machine learning algorithms used to generate code and feedback.
PairBuddy’s timed feedback from the pilot study did not eliminate interruptions, since many

participants still voiced complaints. When participants were deep in thought, they wished that
PairBuddy listened rather than interrupted. However, maintaining an active presence as a navigator
is key to preserving the balance between roles. To this end, we utilize active listening – a technique
to allow a speaker an outlet for self expression [153] – to maintain social presence in a conversation.
For conversational agents, social presence is the feeling and perception of interacting with a human
being [138], and has been shown to increase the use of conversational agents [134], and can even
increase perceived usefulness, trust, and enjoyment [84]. Therefore, we formulated design decision
S5: PairBuddy will increase its social presence using active listening through acknowledgements
and confirmation questions. In this way, PairBuddy can encourage participants to think their ideas
out-loud rather than interrupting their thought process through dialogues such as, “What are you
thinking?” and “What does this code do?”.

, Vol. 1, No. 1, Article . Publication date: September 2021.

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

Designing PairBuddy – A Conversational Agent for Pair Programming 15

(B) Technical Skills: Guidance, Creativity Support, Feature Location, Unnecessary Code,
and Missing Code
To encourage programmers to interact more with PairBuddy (relative to our pilot study), we

conducted a thorough research review to identify the potential capabilities of automated code and
feedback algorithms, as well as techniques to support creative problem solving.

PairBuddy’s power to provide context-specific code and feedback was dependent on the capabili-
ties demonstrated by research. Automated code and feedback techniques [46, 213] show the ability
to provide feedback on code using a dataset of past programming solutions. However, this research
is either limited by the specificity of the feedback [46] or has only been demonstrated in a simple
programming language (iSnap) [213]. To increase the specificity of PairBuddy’s contributions, we
modified design decision T2: PairBuddy will have the limited ability to contribute context-specific
code (as the driver) and provide meaningful feedback (as the navigator) based on a dataset of past
solutions. For example, if PairBuddy detects that a participant’s code is semantically similar yet
deviates from a known solution, it might suggest, “There might be a mistake on line 66.” However, if
the participant writes code that deviates from all past solutions within the database, PairBuddy
will be unable to provide guidance.

Since PairBuddy attempts to replace a human partner, it will be designed to integrate the creative
problem solving stages used by humans. However, in the pilot study, PairBuddy only supported the
Clarify stage (via direction from user stories) and the Implement stage (via example implementa-
tion from online). Therefore, we formulated design decision B4: PairBuddy will add support for
the remaining Idea and Develop stages by using concepts from Idea Garden [92, 93]. Idea Garden
suggests the use of probing questions to promote a programmers’ use of diverse problem-solving
strategies. We integrated two strategies into PairBuddy’s script: working backwards from the goal
and encouraging divergent thinking before convergent thinking. For example, PairBuddy might ask,
“What are all the possible ways we could do this?”, “Why do you think so?”, or “What data structure
could we use?”. As a navigator, PairBuddy can prompt the participant to move from the Idea to the
Develop stage by asking, “What would that [idea] look like?” As a driver, PairBuddy will provide
the empty structure of the code to help programmers conceptualize the solution. Additionally,
PairBuddy can discuss the general structure of the code saying, “I think we should use a for loop/if
statement here,” or “Should we use a while loop or a for loop?”
Both static [121] and dynamic [115] techniques exist to automatically search source code for

specific features or descriptions. For the Java programming language, Flat3 [158] is an Eclipse
plugin that searches source code based on arbitrary descriptions (e.g., “file saving”). Based on
feature location algorithms, we formulated design decision T5: PairBuddy can identify locations
within the code that match a description. For example, if the participant asks, “Do we return false in
the tie game detection function?”, PairBuddy can identify the isTied() function as the context to the
question.

Many programming IDEs include refactoring tools that automatically detect uncalled functions
or unused variables. For the Java programming language, UCDetector [178] is an Eclipse plugin that
can identify unused variables, functions, and classes. Based on this functionality, we formulated
design decision T6: As a navigator, PairBuddy can detect unnecessary blocks of code and suggest
that the programmer consider deleting or modifying them. For example, PairBuddy might suggest,
“I believe we have unnecessary code in the tie test function.”

Research on automated feedback has shown the ability to automatically determine the locations
where code is missing based on pre-defined functions in Haskell [73]. Since Haskell is a functional
programming language, this research does not necessarily apply to an imperative language like
Java. Regardless, the supporting research of previous design decisions [12, 46, 127, 131, 213] would

, Vol. 1, No. 1, Article . Publication date: September 2021.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

16 Robe, et al.

Fig. 5. The main study’s interface including the Eclipse IDE and the man/woman avatar. Note, each participant
only saw one avatar at a time.

be potentially capable of identifying missing code, so we formulated design decision T7: As a
navigator, PairBuddy will direct the driver’s attention to locations where more code is needed.

4.2 Wizard/PairBuddy Implementation
The wizard’s interface and implementation integrated PairBuddy’s new design decisions as dis-
cussed in Section 4.1. The interface design of PairBuddy included the following changes from the
pilot study:
The Saros plugin for the Eclipse IDE was used for remote collaboration rather than to simply

view the participant’s code. Skype [173], Discord [170], and Google Hangouts [172] facilitated audio
and video communication with the participant. To support the integration of lip-synchronization
for PairBuddy’s avatar (based on the lessons learned from the pilot study), we utilized the Facerig
[176] avatar embodiment software. From the limited selection of Facerig avatars, we chose two
avatars (man and woman) based on their professional appearance. Figure 5 shows the interface
that participants used for the main study.

The wizard’s script for the second iteration of PairBuddy was enhanced to include the new design
decisions discussed in Section 4.1. Two researchers acted as the wizard to simulate the behavior of
PairBuddy. The first researcher focused on verbal and non-verbal communication, while the second
researcher focused on gathering and providing code for use as the driver. The decision to have two
wizards was informed from the pilot study, since our single researcher had difficulty balancing all
of their responsibilities as PairBuddy.
To quicken the wizard’s response speed, a custom Electron [175] application was created to

provide the researcher a simple user interface to select dialogue templates, provide context-specific
information, and generate audio via Google Text-to-Speech [80]. The generated voice was sent
to Voicemeter [177] and subsequently Facerig to perform lip-synchronization, and the resulting
avatar and voice streams were sent to participants via communications tools (i.e., Skype, Discord,
Google Hangouts).

4.3 Participants
Due to the COVID-19 pandemic, study sessions were conducted remotely, and recruitment of
participants was done via snowball sampling, social media (Facebook [171], Twitter[174]), and
hiring sites (Upwork [67]). Our recruitment approach helped collect participants from universities
and industries across the country, in addition to local participants. We recruited 14 participants on
a first-come first-serve basis, including 8 students (4 men / 4 women) and 6 professionals (3 men /

, Vol. 1, No. 1, Article . Publication date: September 2021.

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

Designing PairBuddy – A Conversational Agent for Pair Programming 17

Table 5. Demographics of the main study participants.

P# Age Gender Education Programming Experience
MS1 19-23 Woman Undergrad 3 years
MS2 19-23 Man Undergrad 2 years
MS3 19-23 Man Undergrad 2 years
MS4 19-23 Woman Undergrad 2 years
MS5 19-23 Woman Undergrad 3 years
MS6 19-23 Man Undergrad 3 years
MS7 19-23 Woman Undergrad 2 years
MS8 19-23 Man Undergrad 4+ years
MP9 30-40 Woman Masters 4+ years
MP10 41+ Man Masters 4+ years
MP11 19-23 Man Undergrad 3 years
MP12 30-40 Woman Masters 3+ years
MP13 30-40 Man Masters 2 years
MP14 19-23 Woman Undergrad 1 year

3 women). We purposefully achieved a gender balance since research has shown a difference in
preference and behavior across various genders [30, 36, 71, 125, 129, 162]. Note, all participants
self-identified as men and women in their background questionnaires, so we report results from
these two genders. We refer to participants of the main study as either MS# or MP# for students
and professionals respectively. For example, MS4 is the fourth student participant of the main study.
Student participants were given $20 and professionals were given $40 in Amazon gift cards.

4.4 Study Design
The study design remained the same as the pilot study except for the following changes:

As previously mentioned, the main study was conducted during the COVID-19 pandemic, so all
study sessions were conducted virtually. Prior to this 40 minute study, participants completed a self-
efficacy questionnaire. The main study included a tutorial that explained PairBuddy’s abilities and
encouraged participants to use PairBuddy while completing their task. This introduction attempted
to combat the low level of initial (and total) interactions with PairBuddy in the pilot study, and
aimed to ensure that all participants started with the same preconceptions of PairBuddy’s abilities
[14]. Additionally, a pre-study questionnaire was used to establish a baseline for participants’
self-efficacies using a 7 point Likert scale [95] for a maximum score of 63 points.
The study was designed to ensure that each participant interacted with both of PairBuddy’s

gender embodiments. Rather than evaluating gender preferences directly, we used a within-study
design where the avatar’s gender was changed halfway through the study to compare preferences
on an individual basis. The initialization of PairBuddy’s gender was evenly distributed with the
genders of the participants.
The study was followed by another self-efficacy questionnaire, a pair programming preference

questionnaire, and interview questions to triangulate our study findings. The same interview
questions used in the pilot study were integrated with additional questions related to the usability
of the features that were more difficult to evaluate using our think-aloud study.

, Vol. 1, No. 1, Article . Publication date: September 2021.

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

18 Robe, et al.

4.5 Data Analysis
The resulting transcripts were analyzed using the codeset identified in the pilot study (Table 3).
Three researchers independently coded 20% of the transcripts and reached an agreement on 93% of
the coded data by calculating inter-rater reliability using the Jaccard index. The wizard’s script,
study transcripts, and interview transcripts can be found [4].

4.6 Limitations
One limitation of the main study is its small sample size of 14 programmers. Although our sample
was gender-balanced and included a wide range of skill levels (8 students and 6 professionals),
the study’s small size did not allow us any room for further stratification. On the other hand, our
study helped evaluate PairBuddy’s usability with a diverse population of programmers. While we
only studied one programming language (Java) and one IDE (Eclipse), our focused approach was
an appropriate choice to show baseline feasibility. Studies with more diverse programmers and
languages will need to be conducted in the future.
Programmers’ experience with the Java language, test-driven development, and pair program-

ming may have affected their experience with PairBuddy. For example, PairBuddy provided very
few contributions for our most experienced professional, MP10, while providing more contributions
to other less-experienced professionals. In the future, more variables should be considered in our
analysis.
Furthermore, our results are based on the simple task of tic-tac-toe, but the game’s simplicity

may have affected our usability results since one participant mentioned that he might not trust
PairBuddy for more complex tasks. While the variation of task complexity needs to be further
explored with additional studies, nonetheless, we believe that our task was a good representation
of student assignments and that our results confirm the feasibility of PairBuddy in educational
settings.

We studied the usability of PairBuddy in a virtual lab setting for only 40minute sessions. Although
this was good starting point, our study could not provide a long-term perspective regarding the
usability and user experience of programmers at this moment. For instance, will interactions with
PairBuddy for longer periods of time increase or decrease trust?
Finally, we were forced to conduct a virtual lab study due to COVID-19, which may not mimic

traditional lab studies where participants sit in a controlled lab environment. However, we view
this as an opportunity to evaluate the usability of PairBuddy in a hybrid lab study consisting of
both real-world and controlled lab settings.

4.7 Results
The second iteration of PairBuddy served as a realistic portrayal of a pair programming conversa-
tional agent. Insights collected are as follows:

(1) Helping Programmers
The results from Figure 6 show that participants were most likely to request help from PairBuddy

(yellow) during the second half of sessions. We conjecture that the change in requests overtime is
the result of participants’ initial distrust in PairBuddy, as noted by MS5’s comment, “I think I was a
little distrustful at first half of the application, but then after working with it, especially after I saw
that it was helping me solve the problem... I trusted it a little more.”
Participants’ confidence in their coding abilities increased with the usage of PairBuddy. On

average, participants’ self-efficacy scores increased +3.64 from a total of 63 points (49.71 to 53.07)
after their interactions with PairBuddy (Table 6). Only 3/14 participants reported a decrease in
self-efficacy. MS6 was by far the largest outlier, with a difference in self efficacy of -18 points: 13

, Vol. 1, No. 1, Article . Publication date: September 2021.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

Designing PairBuddy – A Conversational Agent for Pair Programming 19

Table 6. Self-efficacy scores for main study participants from pre- and post-study questionnaires. Responses
to nine questions were scored on a seven point Likert scale for a maximum score of 63 points.

P# Pre-Study Post-Study Difference
MS1 50 56 +6
MS2 57 61 +4
MS3 50 45 -5
MS4 52 58 +6
MS5 41 56 +15
MS6 46 28 -18
MS7 43 55 +12
MS8 55 51 -4
MP9 48 58 +10
MP10 51 54 +3
MP11 60 61 +1
MP12 44 53 +9
MP13 50 50 0
MP14 49 57 +12

Average 49.71 53.07 +3.64

points fewer than any other participant. Otherwise, 10/14 participants saw an increase in their
self-efficacy.

Getting Directions andDomain-Related Help: Participants received direction from PairBuddy
as seen in Figure 6. PairBuddy’s guidance helped start participants in the right direction, as PS5
explained, “It definitely helped me get started.” Participants received guidance for an unfamiliar
language, including MP11 who said, “Getting started was the hardest part for me, like trying to wrap
my head around Java again.” Some learned new techniques, like PS2 who commented, “How to do
test-driven development... the robot helped me make sure that I was writing it correctly, and I liked
that.”

Clarify a Method or Test Case: Participants mentioned that PairBuddy helped clarify task
objectives, including MP9 who commented, “I felt like PairBuddy was pretty good at understanding
the overall objective of the of the project.” This positive feedback was largely caused by PairBuddy’s
ability to Clarify the task based on user stories or generated solutions. For example, PairBuddy
provided insight when MS6 was trying to finish a method, “I think we are missing code in this
function.” However, PairBuddy often couldn’t answer Idea-related questions, so when MP14 asked,
“Dowe need to account for the opposing playermark?”, PairBuddy reflected the question by responding,
“ What do you think?” While such responses continued the conversation, they did not provide the
direct, human-like answers that participants desired.

Adding Methods or Test Cases: As the driver, PairBuddy wrote both test cases and method
functionality. PairBuddy’s contributions helped participants make progress, and almost all par-
ticipants ended up reusing the code given by PairBuddy. This includes MP11, who successfully
adapted PairBuddy’s test case for a vertical win into both horizontal- and diagonal-win test cases.
For some participants, PairBuddy’s code offered a new approach. For instance, when MS1 struggled,
PairBuddy’s alternative suggestion provided the insight necessary for MS1 to complete her vertical
win functionality.

, Vol. 1, No. 1, Article . Publication date: September 2021.

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

20 Robe, et al.

Fig. 6. A timeline illustrating the contributions PairBuddy made in the main study. Contributions were
either offered by PairBuddy (blue) or asked by participants (yellow). In some instances, PairBuddy was
unable to provide help (red). Contributions include direction, domain-related help, method/test case addition,
method/test case clarification, and bug identification/fixing.

Identifying or Fixing Bugs: As both the driver and navigator, PairBuddy helped participants
find and fix bugs, leading to an increase in code quality. As the navigator, PairBuddy would often
point to locations of errors or provide hints. For MS1, PairBuddy pointed, “I think there is a typo on
line 107,” leading her to immediately fix the mistake. On some occasions, PairBuddy had to fix bugs
itself when participants struggled to understand the error that PairBuddy was referring to. When
MP13 had trouble fixing an identified mistake, PairBuddy took action by asking for permission to
drive and fixing the error while completing the remainder of the method.

When PairBuddy Failed to Answer: Figure 6 shows the instances where PairBuddy was unable
to help participants (red). Either PairBuddy would redirect queries (e.g., “What do you think?”) or
admit its limitations (e.g., “Sorry, I’m not good at logic”). PairBuddy’s inability to provide help like a
human negatively affected some participants’ trust and confidence in PairBuddy’s abilities. After
his queries went unanswered three times, MS2 mentioned PairBuddy’s inaction as a negative aspect
in his interviews, “He couldn’t respond to that. At least not in a way that made sense.” Participants
expressed concerns about PairBuddy’s inability to answer “why” questions or give reasoning behind
the code it write. After PairBuddy failed to help, MP9 later commented in her interviews, “I felt like
they [PairBuddy] knew what to do. But they weren’t always able to communicate to me the why.”

(2) Usability of PairBuddy
In their interviews, participants expressed mostly positive experiences with PairBuddy (Table 7):
Enjoyed/Helped/Learned:
Enjoyed: A vast majority (12/14) of participants enjoyed working with PairBuddy. MP10 was the

most enthusiastic commenting, “It is really, really awesome.” PairBuddy’s design surprised many

, Vol. 1, No. 1, Article . Publication date: September 2021.

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

Designing PairBuddy – A Conversational Agent for Pair Programming 21

participants, including MS5 who said, “I thought it’s really cool technology. I didn’t know stuff like
that was out there, really. So it’s pretty novel.” The only participant who disliked PairBuddy was
MS6, who mentioned, “Not particularly...There wasn’t as much human interaction.”
Helped: Most participants (13/14) expressed that PairBuddy helped them solve the task. MS8

thought PairBuddy saved him time saying, “It did, yea. It saved me some time because a lot of that
time would have been spent doing trial and error.” Even MS6, who disliked PairBuddy, indicated
that it helped him solve the problem, “[PairBuddy] helped me understand... how to start approaching
things so that I could start going myself.”

Learned: However, only 6/14 participants said that they learned from PairBuddy, and 3/14
remained neutral. Some participants mentioned that they learned task-related concepts, including
MS6 who commented, “I think learning the general structure of what pair programming is,” while
others learned new creative strategies including MS3 who said, “I got it like a new perspective... I
guess I still need to start thinking more outside the box.” On the other hand, 5/14 responded they
did not learn from PairBuddy. Unlike a human, PairBuddy didn’t explain the code it wrote, as MS3
described that PairBuddy “left it up to [their] interpretation.” PairBuddy’s inability to express its
reasoning may have contributed to lower satisfaction with PairBuddy.

Future Design: To improve PairBuddy’s design going forward, we will explore more ways to
impart knowledge through code and test case generation to the extent that current research allows
(details in Section 5).

Trusted: Most (12/14) participants trusted PairBuddy overall (Table 7). Participant’s trust may
have been based on the assumption that, “[PairBuddy] was familiar with what the program should
look like,” as described by MS7.

Navigator and Driver Roles: PairBuddy was trusted as a navigator (12/14) more than as a driver
(8/14).

PairBuddy acted as an active navigator, using soft skills (leadership, motivation, uncertainty, and
social presence) to help increase participants’ confidence and trust. 12/14 participants indicated trust
and confidence, as confirmed by MS2’s comment, “I thought it [navigation] was it’s [PairBuddy’s]
most useful function.” Similarly, MS6 mentioned, “One thing that was helpful is that when they made
their navigator suggestions, like all of them seemed reasonable.” The motivation PairBuddy provided
was praised by participants like MS7 who explained that, “It was cute that it said, ‘Good job,’ and gave
positive affirmations.” PairBuddy’s social presence provided a sense of security toward participants’
work, as evidenced by MS2’s comment, “I think that I can keep on coding and not like, worry about
checking it three more times because PairBuddy’s got my back.” MP9 treated PairBuddy as someone
to talk to, commenting, “I could say things in the same way that I would to a human.”
PairBuddy acted as an active driver, using technical skills to make contributions, give just-in-

time feedback, and support divergent thinking. Participants appreciated PairBuddy’s divergent
thinking including MS5 who commented, “I’m gonna approach coding in the future... [by] stepping
back and looking for alternate approaches.” Although participants trusted PairBuddy’s code and
just-in-time feedback, they wanted even more assistance. This desire was evidenced by MS3’s
suggestion, “Maybe have it give more frequent and more pointed advice on the code itself.” MS7 wished
PairBuddy’s feedback was more in-line with their own ideas, “I think my trust would decrease if I
noticed that the suggestions it was giving me weren’t like really aligned with what I was trying to do.”

Preference for PairBuddy vs. Human: Participants had mixed opinions when asked to compare
PairBuddy with a human. Some participants preferred PairBuddy’s collaboration style including
MS5 who commented, “I think I was getting feedback from it akin to what I would from humans,
and in fact, [it] is a little less intrusive than some humans are when it comes to how I’m writing my

, Vol. 1, No. 1, Article . Publication date: September 2021.

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

22 Robe, et al.

code.” However, many participants wished to work with humans to discuss ideas, since PairBuddy
couldn’t explain its own. In fact, participants ignored PairBuddy’s suggestions a total of 16 times
and often chose to pursue their own ideas. MS3 wished PairBuddy provided explanations as a
driver, and described that, “The code that it [PairBuddy] wrote was functional for what it did, but it
[PairBuddy] never actually explained what it drove.” Participants also expected PairBuddy to offer
more contextual feedback, as MS6 mentioned, “If I were to ask a human, they wouldn’t just say ‘I
may have made a mistake,’ they would explain what they did and explain why they were thinking
they made a mistake or why they thought it wasn’t a mistake.”

Future Design: Going forward, we will improve PairBuddy’s ability to generate explanations
and contribute to discussions as much as current technology will allow (details in Section 5).

Embodiment: The embodiment of PairBuddy’s voice was much appreciated, while the presence
of PairBuddy’s avatar received mixed feelings. Feedback on the presence of the text chat leaned
negative (see Figure 7).

Avatar: Most participants preferred (6/14) or were neutral (6/14) towards the presence of an avatar.
Some participants found it natural to interface with an avatar, as described by MS7, “It feels more
natural to talk to it than if there’s no avatar.” Similarly, MS4 felt a closer connection to PairBuddy
when personified, saying, “[I felt connected] more so than if it was just a voice... or just text.” On the
other hand, 2/14 participants did not like the avatar. These differing opinions coincide with mixed
empirical evidence for the necessity of avatars for agent embodiment [50, 83, 87, 133, 185, 208].

Voice: Voicewas PairBuddy’smost desired feature (13/14 preferred, 0/14 not preferred). The ability
to communicate with PairBuddy verbally was very intuitive for participants. MP14 particularly
enjoyed being able to think out loud, commenting, “I liked being able to speak... [so that PairBuddy
can] understand what I’m saying while I’m talking out loud rather than having to type out everything.”
MS2 found PairBuddy’s voice to be less distracting when he was deep in thought saying, “I feel like
the voice is better when you’re focused on programming.”

Text: The desire for text messages wasmixed (2/14 preferred, 7/14 not preferred). Participants who
advocated for text suggested it as an addition, rather than a replacement, of voice communication.
MS5 suggested to display PairBuddy’s messages as text bubbles, explaining, “I also could also see like
a little pop up in the corner maybe being helpful.” However, most participants thought text would be
distracting, as MP9 described, “I wouldn’t want to be context switching between the programming
and the messages.” These results contradict preferences for text chat in the pilot study, and may be
influenced by the lack of text messages in the main study.

Gender: Participants’ gender preferences were identified by asking whether they preferred
the first or second avatar/voice. Many participants’ reasoning for their choice was not gender-
related; MP13’s reason was “just because I started with it,” while MS4’s was because “she sounded
a little less robotic.” While previous research has identified gender preferences and bias toward
conversational agents [26, 38, 184], no useful patterns emerged from our data that evidenced any
effect of PairBuddy’s gender.

Future Design: We will keep the same embodiment design with additional choices for Pair-
Buddy’s gender, ethnicity, and accompanying voice tones.

Tone/Style/Feedback: Participants preferred a casual tone, had mixed opinions of PairBuddy’s
dialogue style, and desired non-neutral feedback (Table 7).

Polite and casual tone: Most participants preferred if PairBuddy used a casual (8/14) over a
polite tone (2/14). Since PairBuddy’s tone leaned more casual, all participants were satisfied with
PairBuddy’s tone (14/14). Even participants who preferred polite dialogue liked PairBuddy’s tone
the way it was. In his interview, MP10 commented, “I felt it was excellent. It didn’t feel to be like trying

, Vol. 1, No. 1, Article . Publication date: September 2021.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Designing PairBuddy – A Conversational Agent for Pair Programming 23

Table 7. Responses to interview questions in the main study.

Interview Question Yes Neutral No
Did you enjoy working with PairBuddy? 12 1 1
Did PairBuddy help you solve the problem? 13 0 1
Did you learn anything from PairBuddy? 6 3 5
Did you trust PairBuddy? 12 2 0
Did you trust PairBuddy’s navigation? 12 1 1
Did you trust PairBuddy’s navigation over a human? 5 6 3
Did you trust PairBuddy’s driving? 8 5 1
Did you trust PairBuddy’s driving over a human? 4 4 6
Was PairBuddy’s avatar helpful? 6 6 2
Was PairBuddy’s voice helpful? 13 1 0
Would more text have been helpful? 2 5 7
Do you prefer a casual over a polite agent? 8 4 2
Was PairBuddy too casual (yes) or too polite (no)? 0 14 0
Do you prefer human-like dialogue over robotic? 5 6 3
Do you prefer positive over neutral feedback? 12 2 0
Do you like negative feedback? 6 7 1

to be polite. It didn’t feel to be rude as well.” Similarly, MP14 thought PairBuddy’s tone achieved a
good balance, saying, “And the tone was like, not very formal, which I liked, but I wouldn’t want it
more casual than it is now.”

Human vs. robotic style: Participants had mixed opinions on whether PairBuddy should be
human-like or robotic. 5/14 participants favored human-like dialogue, while 3/14 wished Pair-
Buddy’s dialogue was more robotic. MS3 idealized a more human PairBuddy, explaining, “Ultimately,
I think having it speak as human-like as possible is the goal.” MP10 described that he enjoyed the
social aspect of PairBuddy’s human-like dialogue, “I enjoy... my buddies and working with them...
Closer to that, I think more people would like [PairBuddy] because that is how they work in real world.”
Participants who preferred robotic dialogue mentioned that it would be strange or disturbing
if PairBuddy was more human-like, including MS1, who commented, “It would be weirder if it
[PairBuddy] was more like a human; You kind of expect some level of not human dialogue.” Similarly,
MS5 explained her feelings toward PairBuddy’s style, “I think there’s something a little creepy about
something that’s like really close to being human, but not quite.”

Positive/Neutral/Negative Feedback: All participants preferred (12/14) or were neutral (2/14)
toward PairBuddy’s positive feedback. MS4 voiced her opinion, saying, “It [PairBuddy] wasn’t rude
about it. He was very like, ‘I don’t know if that’s gonna work,’ rather than like, ‘Wow, why’d you do
that?’ I think it made it... a little more trustworthy.” MP10 emphasized the need for exclusively positive
feedback, “The way [humans] think and the way they solve problems requires a lot of motivation and
requires a lot of positive praise, even if they are doing things wrong.”

Participants interpreted negative feedback as identifying mistakes in the code, so most of them
liked (6/14) or were neutral (7/14) towards such responses. This misunderstanding was evidenced
by MS8’s comment, “If there are negative parts to what I’m doing, I’d like to know.”

, Vol. 1, No. 1, Article . Publication date: September 2021.

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

24 Robe, et al.

Future Design: We will provide personalization for PairBuddy’s script across tone, style, and
feedback (details in Section 5). To avoid the “uncanny valley” effect where realism becomes unset-
tling [70], PairBuddy’s movement and stylization will be further considered. Finally, PairBuddy
will continue to give encouragement while still providing informative feedback.

(3) Pair Jelling with PairBuddy as a Programming Partner
Participants’ interactions with PairBuddy were fewer in the first half of sessions, but increased

by the second half. Infrequent interactions may have been caused by participants’ unfamiliarity
with PairBuddy as evidenced by MS7’s interview, “It was a little bit awkward initially to figure out
what things I could say that it would actually respond to... But I figured that out pretty quickly once
we started working more.” Adjusting to PairBuddy in this way is similar to the pair “jelling” period
of human-human pair programming, where programmers take time to get accustomed to each
other’s personality, style, and abilities [94]. However, the jelling period with PairBuddy often ended
when participants understood its utility as MS5 explained, “Seeing consistent results in regards to...
positively affecting my performance would increase my trust in it [PairBuddy].” Research corroborates
this claim, as potential productivity has shown to be a significant motivator for the utilization of
conversation agents [27].

(4) Unrealistic Assumptions Regarding PairBuddy’s Capabilities
Our participants assumed that PairBuddy would know all the answers as described by PS1, “I

assumed it [PairBuddy] knew the answer.” Similarly, PS11 commented, “I went in assuming that...
you guys had already tested it quite a bit, and so the robot was really familiar with what the program
should look like.” This assumption of PairBuddy’s knowledge is untrue since design decisions T1 and
T2 provide PairBuddy with only limited abilities since automatic code and test case generation are
topics of ongoing research. In the future, the inaccurate expectations of PairBuddy’s abilities can be
addressed through further clarifications of PairBuddy’s limitations in its script, “Sorry, I have limited
capabilities. Researchers are working to make me smart enough to answer all your questions. Follow
the link I sent in the text chat to read the current research on automated code and test case generation.”
However, PS3 understood PairBuddy’s limitations, especially for more complicated tasks that
require more discussions, “I guess it depends on the complexity and the nuance of the situation and
the [user] stories that I need to take care of, so for simpler problems or more straightforward tasks,
I’d say that prefer PairBuddy. But for more complex scenarios, I would rather have a human that can
provide more... pointed and specific feedback and advice.”

(5) Helpful as a Non-Judgemental Partner and When Working Solo
PairBuddy helped participants by acting as a non-judgemental partner. PS5 explained, “I think

the big thing is sometimes as a programmer, it’s embarrassing when you make mistakes, so you’re
stuck on something around your colleagues, but PairBuddy I don’t think judges me.” PS2 described the
lack of pressure to perform, “I feel like whenever I program alone, there’s less pressure to like write
something that’s correct the first time... So I feel like in the end, it [PairBuddy] helped me write better
code.”

5 DISCUSSIONS AND FUTUREWORK
Our results indicate that PairBuddy was an effective pair programming partner and was enjoyed
by our study participants. For the future, the design space as well as the associated challenges are
as follows:

, Vol. 1, No. 1, Article . Publication date: September 2021.

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

Designing PairBuddy – A Conversational Agent for Pair Programming 25

(1) Supporting Method-level Code and Test Case Generation
Designing a conversational agent for the programming domain is challenging. Unlike other

conversational agents, PairBuddy must uniquely support all stages of software development (i.e.,
clarifying requirements, discussing ideas, designing solutions, and implementing code). Support
for each phase requires different knowledge and a different approach.
Moving forward, we need to research automated test case, code, and explainable feedback

generation for PairBuddy. Currently, the language models such as GPT-3 [29] can be trained from
Github [29, 77–79] to generate code, while automated test cases can be generated by tools such
as Randoop [141] and EvoSuite [65, 66, 154]. However, these tools must be adapted in order for
PairBuddy to explain the decisions made and give appropriate feedback. To directly answer the
“why” questions that programmers ask, Ko et al. [105, 106] created the automated tool Whyline for
both Alice [42] and Java, but similar research must be conducted in other programming languages
and domains to allow agents to more directly support the refactoring stage of software development.
Furthermore, dialogues are often multimodal and involve both verbal and nonverbal inputs

[23, 48, 52, 210]. Therefore, in the future, each dialogue template of PairBuddy’s script will be
accompanied by non-verbal meta-data (e.g., avatar facial expressions, UI events) to facilitate multi-
modal communication.

(2) Supporting Diverse Problem Solving Strategies
Additional problem-solving strategies must be integrated into PairBuddy to fully support all

stages of the creative problem solving process. Problem-solving strategies such as backwards,
divide and conquer, analogy, generalization, and “sleep on it” [112, 144, 198] enable programmers
to make progress on their tasks. Previous research from Idea Garden [92, 93] shows that these
problem-solving strategies can be implemented by presenting suggestions via language-independent
templates, which are informed by language-dependent information about user tasks and progress.
Based on Idea Garden, we integrated a backward problem-solving strategy in PairBuddy’s script
to support divergent thinking, but the future design will integrate additional problem-solving
strategies inspired by Idea Garden.

(3) Supporting Learning Preferences: Solo or Collaboration
Research has shown that collaborative learning is more effective than traditional methods (such

as lectures) since collaboration allows students to build their own mental models based on the
discussion and knowledge transfer that occurs during the problem-solving process [11]. But still,
many of our participants preferred to work solo. In the pilot study, some participants only used
PairBuddy as a resource for code examples, while in the main study, a few preferred that PairBuddy
only observe and identify errors. Still, others may prefer full collaboration to enjoy the benefits of
pair programming. To support the diversity of learning preferences (solo vs. collaborative) among
programmers, we will provide different options for PairBuddy’s behavior including “Navigator
Only,” “Driver Only,” or “Full Pair Programmer” modes.

(4) Implementing PairBuddy as a Task-Oriented vs. Non-Task-Oriented Agent
PairBuddy’s design needs to fall between the two common types of conversational agents: task-

oriented and non-task-oriented. Task-oriented agents perform a variety of tasks and services for
users (e.g., Amazon’s Alexa [188]) and provide concise, direct answers to user queries based on
knowledge sources (e.g., Bing QA [196]). Non-task-oriented agents facilitate natural interaction
between humans and electronic devices (e.g., Meena [8]). For pair programming, a task-oriented
agent can assist user queries, while a non-task-oriented agent can engage in rapport making and
off-topic dialogue. Research [39] has even identified methods to integrate both task- and non-
task-oriented agents together. In our human-agent study, we found that 89.28% (3967/4443) of

, Vol. 1, No. 1, Article . Publication date: September 2021.

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

26 Robe, et al.

programmers’ utterances were task-oriented. The abundance of task-oriented dialogue suggests that
it may be advantageous for the future to implement PairBuddy as a task-oriented conversational
agent that utilizes a pipeline architecture for intent classification, state tracking, and response
generation. Subsequently, we must collect a large enough dataset of pair programming dialogue to
train machine learning models to generate automated responses to programmers’ queries.

Furthermore, we must consider the choice of datasets used for both task- and non-task-oriented
conversational agents, since differences exist between human-human and human-agent dialogues. In
human-human dialogue, changing roles is not often explicit [151], whereas in human-agent dialogue,
role exchanges involve verbal permission and acceptance. Additionally, lengthy discussions about
ideas are more prevalent in human-human than in human-agent conversations. The difference
in dialogue style may require that the natural language processing, dialogue state tracking, and
dialogue policy components of future conversational agents consider training their machine learning
models on human-agent conversations rather than human-human.

(5) Designing for Varied Expertise of Programmers
Our main study explored the similarities and differences between expert (professional) and

novice (student) programmers. However, self-efficacy scores and interview questions revealed
only marginal differences. For instance, students considered PairBuddy’s feelings (5/8) much more
than professionals (1/6), suggesting that professionals used PairBuddy more as a tool rather than a
partner. However, participants’ familiarity in the applicable domain (Java) may have mattered more,
as two professionals (MP13 and MP14) had less experience than many students. Particularly, our
most experienced professional (MP10) uniquely ignored PairBuddy, opposed negative feedback, and
excelled at the task. In regard to trusting PairBuddy, there was a slight discrepancy: 3/6 professionals
vs. 5/8 students. While our interviews weren’t conclusive, individuals with particularly low or
high experience with a domain tend to trust computer answers more [37, 206]. Hence, future work
will focus more specifically on the range of programming experience within both educational and
professional settings.

(6) Manifesting Anthropomorphic Features of a Programmer
Although we strive to integrate anthropomorphic features into PairBuddy, we received mixed

reactions from our participants. While PairBuddy’s voice felt natural to participants, its avatar
was less impactful, and many participants even minimized the avatar window. Preferences toward
a more robotic or a more human-like PairBuddy were very mixed as well. For the past 20 years,
researchers have argued in favor or against including anthropomorphic features in intelligent
agents [72, 103]. Therefore, it is still an open-ended question whether PairBuddy should use
features such as embodiment or emotional intelligence. In future studies, we will investigate
whether anthropomorphic features are appropriate for PairBuddy.

Preferences toward PairBuddy’s dialogue and interactions varied across many dimensions (e.g.,
human-like vs. robotic, positive vs. negative feedback). Participants’ opinions often contradict one
another, hindering the design of a universally accessible PairBuddy. Even for broadly accepted
preferences (e.g., casual vs. polite), opinions will inevitably diverge with a larger sample size. To
accommodate individual differences, PairBuddy’s future design should be malleable, allowing users
to tune PairBuddy’s parameters to their liking [15]. One possible solution is to make PairBuddy’s
script interchangeable. For example, a robotic version of PairBuddy’s script might say, “I’m 80%
certain that there is an error on line 45,” while a casual version would say, “I think we might have
made a mistake on line 45.” However, interchangeable scripts only go so far, so in the future, we
will explore additional avenues to provide a personalized PairBuddy experience.

, Vol. 1, No. 1, Article . Publication date: September 2021.

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

Designing PairBuddy – A Conversational Agent for Pair Programming 27

6 CONCLUSION
In this research, we explore the uncharted territory of interactive pair programming conversational
agents through the user-centered prototyping of our agent – PairBuddy. This work makes several
contributions, including ones that generalize beyond pair programming:

• Anthropomorphic properties of PairBuddy arose from integrating diverse interface and
interaction mechanisms (embodiment, dialogue styles, and agent actions) and programmer
characteristics (technical skills and soft skills). These properties stem from an integration
of novel concepts from our extensive literature review of various domains such as human-
computer interaction, software engineering, artificial intelligence, psychology, and education.
These properties can be utilized for advancing programmers’ interactions in intelligent-
tutoring systems and interactive educational platforms.

• Our focused design, evaluation, and refinement cycles through the use of two Wizard of Oz
studies incrementally evolved PairBuddy’s functionality to realize a robust conversational
agent for pair programming. This approach can drive the design for programming conver-
sational agents in other domains of programming including educating children, end-user
programmers, and people with disabilities.

• The wizard’s script and study materials for both pilot [5] and main studies [4] are available
online for reproducibility by researchers and practitioners.

Our study results showed programmers’ positive attitudes towards using PairBuddy. The results
confirm the feasibility of PairBuddy as a programming partner that can significantly advance
programmer-computer interactions. PairBuddy has significant potential to change how program-
ming is learned and how programming is done. In the words of one of our participants with 20+
years of experience, “I think what I learned out of this [study] is that [PairBuddy has] a lot of potential
and... it excites me a lot where technology is going.”

ACKNOWLEDGMENTS
We would like to thank David Magar, Jarow Myers, Sam Gurka, Katherine Kwasny, and Bali Ong
for help with the studies; David Piorkowski and Rachel Bellamy for revising; and Courtney Spivey
for editing.

REFERENCES
[1] 2017. ISO/IEC/IEEE International Standard - Systems and software engineering–Vocabulary. ISO/IEC/IEEE

24765:2017(E) (2017), 1–541. https://doi.org/10.1109/IEEESTD.2017.8016712
[2] 2018. ISO/IEC/IEEE International Standard - Systems and software engineering — Developing information for users

in an agile environment. ISO/IEC/IEEE 26515:2018(E) (2018), 1–32. https://doi.org/10.1109/IEEESTD.2018.8584455
[3] 2020. GitHub. http://github.com
[4] 2020. Main Study Supporting Material. https://drive.google.com/drive/folders/179OnUEVqPHQjW_

K38ynUopyL4MDKlG-u?usp=sharing
[5] 2020. Pilot Study Supporting Material. https://drive.google.com/drive/folders/1WgINmA_

iz3iONfpbAfNB70oCN25mJ76k?usp=sharing
[6] 2020. StackOverflow. http://stackoverflow.com
[7] Gregory D. Abowd and Alan J. Dix. 1992. Giving undo attention. Interacting with Computers 4, 3 (12 1992), 317–342.

https://doi.org/10.1016/0953-5438(92)90021-7 arXiv:https://academic.oup.com/iwc/article-pdf/4/3/317/2175174/iwc4-
0317.pdf

[8] Daniel Adiwardana, Minh-Thang Luong, David R So, Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang, Apoorv
Kulshreshtha, Gaurav Nemade, Yifeng Lu, et al. 2020. Towards a human-like open-domain chatbot. arXiv preprint
arXiv:2001.09977 (2020).

[9] Ali Ahmadvand, Jason Ingyu Choi, and Eugene Agichtein. 2019. Contextual dialogue act classification for open-domain
conversational agents. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 1273–1276.

, Vol. 1, No. 1, Article . Publication date: September 2021.

https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1109/IEEESTD.2018.8584455
http://github.com
https://drive.google.com/drive/folders/179OnUEVqPHQjW_K38ynUopyL4MDKlG-u?usp=sharing
https://drive.google.com/drive/folders/179OnUEVqPHQjW_K38ynUopyL4MDKlG-u?usp=sharing
https://drive.google.com/drive/folders/1WgINmA_iz3iONfpbAfNB70oCN25mJ76k?usp=sharing
https://drive.google.com/drive/folders/1WgINmA_iz3iONfpbAfNB70oCN25mJ76k?usp=sharing
http://stackoverflow.com
https://doi.org/10.1016/0953-5438(92)90021-7
https://arxiv.org/abs/https://academic.oup.com/iwc/article-pdf/4/3/317/2175174/iwc4-0317.pdf
https://arxiv.org/abs/https://academic.oup.com/iwc/article-pdf/4/3/317/2175174/iwc4-0317.pdf

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

28 Robe, et al.

[10] B. Al-Ani and D. Redmiles. 2009. In Strangers We Trust? Findings of an Empirical Study of Distributed Teams. In 2009
Fourth IEEE International Conference on Global Software Engineering. 121–130.

[11] Maryam Alavi. 1994. Computer-mediated collaborative learning: An empirical evaluation. MIS quarterly (1994),
159–174.

[12] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege. 2010. A Systematic Review of the Application and
Empirical Investigation of Search-Based Test Case Generation. IEEE Transactions on Software Engineering 36, 6 (2010),
742–762.

[13] Teresa M. Amabile and Michael G. Pratt. 2016. The dynamic componential model of creativity and innovation
in organizations: Making progress, making meaning. Research in Organizational Behavior 36 (2016), 157 – 183.
https://doi.org/10.1016/j.riob.2016.10.001

[14] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira Nushi, Penny Collisson, Jina Suh, Shamsi
Iqbal, Paul N. Bennett, Kori Inkpen, Jaime Teevan, Ruth Kikin-Gil, and Eric Horvitz. 2019. Guidelines for Human-AI
Interaction. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI ’19). ACM, New York, NY, USA, Article 3, 13 pages. https://doi.org/10.1145/3290605.3300233

[15] Ofer Arazy, Oded Nov, and Nanda Kumar. 2015. Personalityzation: UI personalization, theoretical grounding in HCI
and design research. AIS Transactions on Human-Computer Interaction 7, 2 (2015), 43–69.

[16] Michael Armstrong. 2012. Armstrong’s handbook of reward management practice: Improving performance through
reward (12 ed.). Kogan Page Publishers.

[17] Zahra Ashktorab, Mohit Jain, Q. Vera Liao, and Justin D. Weisz. 2019. Resilient Chatbots: Repair Strategy Preferences
for Conversational Breakdowns. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
(Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, Article 254, 12 pages.
https://doi.org/10.1145/3290605.3300484

[18] Claudio Barra and Broderick Crawford. 2007. Fostering Creativity Thinking in Agile Software Development, Vol. 4799.
415–426. https://doi.org/10.1007/978-3-540-76805-0_37

[19] Amy L. Baylor and Soyoung Kim. 2009. Designing nonverbal communication for pedagogical agents: When less is
more. Computers in Human Behavior 25, 2 (2009), 450 – 457. https://doi.org/10.1016/j.chb.2008.10.008 Including the
Special Issue: State of the Art Research into Cognitive Load Theory.

[20] A. Belshee. 2005. Promiscuous pairing and beginner’s mind: Embrace inexperience. 125 – 131. https://doi.org/10.
1109/ADC.2005.37

[21] Gary Bente, Sabine Rüggenberg, Nicole C. Krämer, and Felix Eschenburg. 2008. Avatar-Mediated Networking:
Increasing Social Presence and Interpersonal Trust in Net-Based Collaborations. Human Communication Research 34,
2 (04 2008), 287–318. https://doi.org/10.1111/j.1468-2958.2008.00322.x arXiv:https://academic.oup.com/hcr/article-
pdf/34/2/287/22325251/jhumcom0287.pdf

[22] Timothy Bickmore and Justine Cassell. 2001. Relational agents: a model and implementation of building user trust. In
Proceedings of the SIGCHI conference on Human factors in computing systems. 396–403.

[23] Dan Bohus, Chit W Saw, and Eric Horvitz. 2014. Directions robot: in-the-wild experiences and lessons learned. In
Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems. 637–644.

[24] Yvonne Brackbill, William E Boblitt, Douglas Davlin, and John E Wagner. 1963. Amplitude of response and the
delay-retention effect. Journal of Experimental Psychology 66, 1 (1963), 57.

[25] Jay Bradley, David Benyon, Oli Mival, and Nick Webb. 2010. Wizard of Oz experiments and companion dialogues. In
Proceedings of the 24th BCS Interaction Specialist Group Conference. British Computer Society, 117–123.

[26] Sheryl Brahnam and Antonella De Angeli. 2012. Gender affordances of conversational agents. Interacting with Comput-
ers 24, 3 (04 2012), 139–153. https://doi.org/10.1016/j.intcom.2012.05.001 arXiv:https://academic.oup.com/iwc/article-
pdf/24/3/139/2027399/iwc24-0139.pdf

[27] Petter Bae Brandtzaeg and Asbjørn Følstad. 2017. Why people use chatbots. In International Conference on Internet
Science. Springer, 377–392.

[28] Tim Brown. 2009. Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation. Harper-
Business.

[29] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[30] Margaret Burnett, Anicia Peters, Charles Hill, and Noha Elarief. 2016. Finding Gender-Inclusiveness Software Issues
with GenderMag: A Field Investigation. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems. ACM, 2586–2598.

[31] Ramón Burri. 2018. Improving user trust towards conversational chatbot interfaces with voice output. Master’s thesis.
KTH, School of Electrical Engineering and Computer Science (EECS).

, Vol. 1, No. 1, Article . Publication date: September 2021.

https://doi.org/10.1016/j.riob.2016.10.001
https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1145/3290605.3300484
https://doi.org/10.1007/978-3-540-76805-0_37
https://doi.org/10.1016/j.chb.2008.10.008
https://doi.org/10.1109/ADC.2005.37
https://doi.org/10.1109/ADC.2005.37
https://doi.org/10.1111/j.1468-2958.2008.00322.x
https://arxiv.org/abs/https://academic.oup.com/hcr/article-pdf/34/2/287/22325251/jhumcom0287.pdf
https://arxiv.org/abs/https://academic.oup.com/hcr/article-pdf/34/2/287/22325251/jhumcom0287.pdf
https://doi.org/10.1016/j.intcom.2012.05.001
https://arxiv.org/abs/https://academic.oup.com/iwc/article-pdf/24/3/139/2027399/iwc24-0139.pdf
https://arxiv.org/abs/https://academic.oup.com/iwc/article-pdf/24/3/139/2027399/iwc24-0139.pdf

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

Designing PairBuddy – A Conversational Agent for Pair Programming 29

[32] Justine Cassell, Yukiko I Nakano, Timothy W Bickmore, Candace L Sidner, and Charles Rich. 2001. Non-verbal cues
for discourse structure. In Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics.
114–123.

[33] Mehmet Celepkolu and Kristy Elizabeth Boyer. 2018. Thematic Analysis of Students’ Reflections on Pair Programming
in CS1. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education (Baltimore, Maryland,
USA) (SIGCSE ’18). ACM, New York, NY, USA, 771–776. https://doi.org/10.1145/3159450.3159516

[34] Christopher P Cerasoli, Jessica M Nicklin, and Michael T Ford. 2014. Intrinsic motivation and extrinsic incentives
jointly predict performance: A 40-year meta-analysis. Psychological bulletin 140, 4 (2014), 980.

[35] Hyun Jin Cha, Yong Se Kim, Seon Hee Park, Tae Bok Yoon, Young Mo Jung, and Jee-Hyong Lee. 2006. Learning styles
diagnosis based on user interface behaviors for the customization of learning interfaces in an intelligent tutoring
system. In International Conference on Intelligent Tutoring Systems. Springer, 513–524.

[36] Gary Charness and Uri Gneezy. 2012. Strong Evidence for Gender Differences in Risk Taking. Journal of Economic
Behavior & Organization 83, 1 (2012), 50–58.

[37] J. Y. C. Chen and M. J. Barnes. 2014. Human–Agent Teaming for Multirobot Control: A Review of Human Factors
Issues. IEEE Transactions on Human-Machine Systems 44, 1 (2014), 13–29.

[38] K. S. Choi. 2013. Evaluating Gender Significance within a Pair Programming Context. In 2013 46th Hawaii International
Conference on System Sciences. 4817–4825.

[39] Tai-Liang Chou and Yu-Ling Hsueh. 2019. A Task-Oriented Chatbot Based on LSTM and Reinforcement Learning.
In Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval
(Tokushima, Japan) (NLPIR 2019). Association for Computing Machinery, New York, NY, USA, 87–91. https://doi.org/
10.1145/3342827.3342844

[40] Alistair Cockburn and Laurie Williams. 2001. Extreme Programming Examined. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, Chapter The Costs and Benefits of Pair Programming, 223–243. http://dl.acm.org/citation.
cfm?id=377517.377531

[41] Michelle Cohn, Chun-Yen Chen, and Zhou Yu. 2019. A Large-Scale User Study of an Alexa Prize Chatbot: Effect of
TTS Dynamism on Perceived Quality of Social Dialog. In Proceedings of the 20th Annual SIGdial Meeting on Discourse
and Dialogue. 293–306.

[42] Stephen Cooper, Wanda Dann, and Randy Pausch. 2000. Alice: A 3-D Tool for Introductory Programming Concepts.
J. Comput. Sci. Coll. 15, 5 (April 2000), 107–116.

[43] Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wünsche. 2018. Intelligent tutoring systems for programming
education: a systematic review. 53–62. https://doi.org/10.1145/3160489.3160492

[44] Fabio QB da Silva, Catarina Costa, A Cesar C Franca, and Rafael Prikladinicki. 2010. Challenges and solutions in
distributed software development project management: A systematic literature review. In Global Software Engineering
(ICGSE), 2010 5th IEEE International Conference on. IEEE, 87–96.

[45] Nils Dahlbäck, Arne Jönsson, and Lars Ahrenberg. 1993. Wizard of Oz studies: why and how. In Proceedings of the 1st
international conference on Intelligent user interfaces. 193–200.

[46] M. Day, M. R. Penumala, and J. Gonzalez-Sanchez. 2019. Annete: An Intelligent Tutoring Companion Embedded into
the Eclipse IDE. In 2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI). 71–80.

[47] Claudio León de la Barra and Broderick Crawford. 2007. Fostering Creativity Thinking in Agile Software Development.
In HCI and Usability for Medicine and Health Care, Andreas Holzinger (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 415–426.

[48] Harm De Vries, Florian Strub, Sarath Chandar, Olivier Pietquin, Hugo Larochelle, and Aaron Courville. 2017. Guess-
what?! visual object discovery through multi-modal dialogue. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 5503–5512.

[49] Edward L Deci, Anja H Olafsen, and Richard M Ryan. 2017. Self-determination theory in work organizations: The
state of a science. Annual Review of Organizational Psychology and Organizational Behavior 4 (2017), 19–43.

[50] Doris M. Dehn and Susanne van Mulken. 2000. The Impact of Animated Interface Agents: A Review of Empirical
Research. Int. J. Hum.-Comput. Stud. 52, 1 (Jan. 2000), 1–22. https://doi.org/10.1006/ijhc.1999.0325

[51] Tom DeMarco and Timothy Lister. 1987. Peopleware: Productive Projects and Teams. Dorset House Publishing Co.,
Inc., New York, NY, USA.

[52] David DeVault, Ron Artstein, Grace Benn, Teresa Dey, Ed Fast, Alesia Gainer, Kallirroi Georgila, Jon Gratch, Arno
Hartholt, Margaux Lhommet, et al. 2014. SimSensei Kiosk: A virtual human interviewer for healthcare decision
support. In Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems. 1061–1068.

[53] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).

[54] Eclipse 2019. Eclipse IDE. https://www.eclipse.org/
[55] Eclipse 2020. Junit. https://junit.org/junit5/

, Vol. 1, No. 1, Article . Publication date: September 2021.

https://doi.org/10.1145/3159450.3159516
https://doi.org/10.1145/3342827.3342844
https://doi.org/10.1145/3342827.3342844
http://dl.acm.org/citation.cfm?id=377517.377531
http://dl.acm.org/citation.cfm?id=377517.377531
https://doi.org/10.1145/3160489.3160492
https://doi.org/10.1006/ijhc.1999.0325
https://www.eclipse.org/
https://junit.org/junit5/

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

30 Robe, et al.

[56] Eclipse Plugin [n.d.]. An Eclipse Plug-in for Distributed Party Programming. www.saros-project.org
[57] Berland Edelman and Inc. 2010. Creativity and education: Why it matters. Retrieved September 18th, 2019 from

http://www.adobe.com/aboutadobe/pressroom/pdfs/Adobe_Creativity_and_Education_Why_It_Matters_study.pdf
[58] R. Elghondakly, S. Moussa, and N. Badr. 2015. Waterfall and agile requirements-based model for automated test cases

generation. In 2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS).
607–612.

[59] Martha Evens and Joel Michael. 2006. One-on-one tutoring by humans and computers. Psychology Press.
[60] FACSvatar 2018. FACSvatar. https://github.com/NumesSanguis/FACSvatar
[61] Raoul Festante. 2007. An introduction to the theory of gender-neutral language. BoD–Books on Demand.
[62] FFmpeg 2016. FFmpeg. http://ffmpeg.org/.
[63] Carmen Fischer, Charlotte P. Malycha, and Ernestine Schafmann. 2019. The Influence of Intrinsic Motivation

and Synergistic Extrinsic Motivators on Creativity and Innovation. Frontiers in Psychology 10 (2019), 137. https:
//doi.org/10.3389/fpsyg.2019.00137

[64] Cyrus K. Foroughi, Nicole E. Werner, Erik T. Nelson, and Deborah A. Boehm-Davis. 2014. Do Interruptions
Affect Quality of Work? Human Factors 56, 7 (2014), 1262–1271. https://doi.org/10.1177/0018720814531786
arXiv:https://doi.org/10.1177/0018720814531786 PMID: 25490806.

[65] Gordon Fraser and Andrea Arcuri. 2012. Whole test suite generation. IEEE Transactions on Software Engineering 39, 2
(2012), 276–291.

[66] Gordon Fraser and Andrea Arcuri. 2013. Evosuite: On the challenges of test case generation in the real world. In 2013
IEEE Sixth International Conference on Software Testing, Verification and Validation. IEEE, 362–369.

[67] Freelancing Platform [n.d.]. Upwork Inc.
[68] Hans Gallis and Erik Arisholm. 2002. A transition from partner programming to pair programming-an Industrial

Case Study.
[69] Jianfeng Gao, Michel Galley, and Lihong Li. 2018. Neural approaches to conversational ai. In The 41st International

ACM SIGIR Conference on Research & Development in Information Retrieval. 1371–1374.
[70] Tom Geller. 2008. Overcoming the uncanny valley. IEEE computer graphics and applications 28, 4 (2008), 11–17.
[71] GenderMag 2019. GenderMag. http://gendermag.org/
[72] Stella George. 2019. From Sex and Therapy Bots to Virtual Assistants and Tutors: How Emotional Should Artificially

Intelligent Agents Be?. In Proceedings of the 1st International Conference on Conversational User Interfaces (Dublin,
Ireland) (CUI ’19). Association for Computing Machinery, New York, NY, USA, Article 19, 3 pages. https://doi.org/10.
1145/3342775.3342807

[73] Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and L. Thomas van Binsbergen. 2016. Ask-Elle: an Adaptable Program-
ming Tutor for Haskell Giving Automated Feedback. International Journal of Artificial Intelligence in Education 27 (02
2016). https://doi.org/10.1007/s40593-015-0080-x

[74] Barney G. Glaser and Anselm L. Strauss. 1967. The Discovery of Grounded Theory: Strategies for Qualitative Research.
Aldine de Gruyter, New York, NY.

[75] M. Gonzalez-Franco, A. Steed, S. Hoogendyk, and E. Ofek. 2020. Using Facial Animation to Increase the Enfacement
Illusion and Avatar Self-Identification. IEEE Transactions on Visualization and Computer Graphics 26, 5 (2020),
2023–2029.

[76] Paul Green and Lisa Wei-Haas. 1985. The Wizard of Oz: a tool for rapid development of user interfaces.
[77] GTP-3 [n.d.]. Tweet of code generated from GPT-3. https://twitter.com/sharifshameem/status/1282676454690451457
[78] GTP-3 [n.d.]. YouTube video showing generation of code by GPT3. https://www.youtube.com/watch?v=

utuz7wBGjKM
[79] GTP-3 [n.d.]. YouTube video showing generation of code by GPT3. GPT3:https://www.youtube.com/watch?v=y5-

wzgIySb4
[80] GTTS 2019. Google text-to-speech python library. https://github.com/pndurette/gTTS
[81] Qinghong Han, Yuxian Meng, Fei Wu, and Jiwei Li. 2020. Non-Autoregressive Neural Dialogue Generation. arXiv

preprint arXiv:2002.04250 (2020).
[82] Brian F. Hanks. 2004. Distributed Pair Programming: An Empirical Study. In Extreme Programming and Agile Methods

- XP/Agile Universe 2004, Carmen Zannier, Hakan Erdogmus, and Lowell Lindstrom (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 81–91.

[83] Dai Hasegawa, Justine Cassell, and Kenji Araki. 2010. The Role of Embodiment and Perspective in Direction-Giving
Systems. (01 2010).

[84] Khaled Hassanein and Milena Head. 2007. Manipulating perceived social presence through the web interface and its
impact on attitude towards online shopping. International Journal of Human-Computer Studies 65, 8 (2007), 689 – 708.
https://doi.org/10.1016/j.ijhcs.2006.11.018

[85] John Hattie. 1999. Influences on student learning. Inaugural lecture given on August 2, 1999 (1999), 21.

, Vol. 1, No. 1, Article . Publication date: September 2021.

www.saros-project.org
http://www.adobe.com/aboutadobe/pressroom/pdfs/Adobe_Creativity_and_Education_Why_It_Matters_study.pdf
https://github.com/NumesSanguis/FACSvatar
http://ffmpeg.org/
https://doi.org/10.3389/fpsyg.2019.00137
https://doi.org/10.3389/fpsyg.2019.00137
https://doi.org/10.1177/0018720814531786
https://arxiv.org/abs/https://doi.org/10.1177/0018720814531786
http://gendermag.org/
https://doi.org/10.1145/3342775.3342807
https://doi.org/10.1145/3342775.3342807
https://doi.org/10.1007/s40593-015-0080-x
https://twitter.com/sharifshameem/status/1282676454690451457
https://www.youtube.com/watch?v=utuz7wBGjKM
https://www.youtube.com/watch?v=utuz7wBGjKM
GPT3: https://www.youtube.com/watch?v=y5- wzgIySb4
GPT3: https://www.youtube.com/watch?v=y5- wzgIySb4
https://github.com/pndurette/gTTS
https://doi.org/10.1016/j.ijhcs.2006.11.018

1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519

Designing PairBuddy – A Conversational Agent for Pair Programming 31

[86] John Hattie and Helen Timperley. 2007. The power of feedback. Review of educational research 77, 1 (2007), 81–112.
[87] Renate Häuslschmid, Max von Bülow, Bastian Pfleging, and Andreas Butz. 2017. SupportingTrust in Autonomous

Driving. In Proceedings of the 22Nd International Conference on Intelligent User Interfaces (Limassol, Cyprus) (IUI ’17).
ACM, New York, NY, USA, 319–329. https://doi.org/10.1145/3025171.3025198

[88] Xinting Huang, Jianzhong Qi, Yu Sun, and Rui Zhang. 2020. Semi-Supervised Dialogue Policy Learning via Stochastic
Reward Estimation. arXiv preprint arXiv:2005.04379 (2020).

[89] Scott G. Isaksen and Donald J. Treffinger. 2004. Celebrating 50 years of Reflective Practice: Versions of Creative
Problem Solving. The Journal of Creative Behavior 38, 2 (June 2004), 75–101.

[90] Mohit Jain, Pratyush Kumar, Ishita Bhansali, Q. Vera Liao, Khai Truong, and Shwetak Patel. 2018. FarmChat: A
Conversational Agent to Answer Farmer Queries. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 4, Article
170 (Dec. 2018), 22 pages. https://doi.org/10.1145/3287048

[91] Mohit Jain, Pratyush Kumar, Ramachandra Kota, and Shwetak N Patel. 2018. Evaluating and informing the design of
chatbots. In Proceedings of the 2018 Designing Interactive Systems Conference. 895–906.

[92] William Jernigan, Amber Horvath, Michael Lee, Margaret Burnett, Taylor Cuilty, Sandeep Kuttal, Anicia Peters, Irwin
Kwan, Faezeh Bahmani, Andrew Ko, and Christopher Mendez. 2017. General Principles for a Generalized Idea Garden.
Journal of Visual Languages & Computing (05 2017). https://doi.org/10.1016/j.jvlc.2017.04.005

[93] Will Jernigan, Amber Horvath, Michael Lee, Margaret Burnett, Cuilty Taylor, Sandeep Kuttal, Anicia Peters, Irwin
Kwan, Faezeh Bahmani, and Andrew Ko. 2015. A Principled Evaluation for a Principled Idea Garden. https:
//doi.org/10.1109/VLHCC.2015.7357222

[94] Danielle Jones and Scott Fleming. 2013. What use is a backseat driver? A qualitative investigation of pair programming.
Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC, 103–110. https:
//doi.org/10.1109/VLHCC.2013.6645252

[95] Ankur Joshi, Saket Kale, Satish Chandel, and D Kumar Pal. 2015. Likert scale: Explored and explained. Current Journal
of Applied Science and Technology (2015), 396–403.

[96] Ewa Kacewicz, James W. Pennebaker, Matthew Davis, Moongee Jeon, and Arthur C. Graesser. 2014. Pronoun
Use Reflects Standings in Social Hierarchies. Journal of Language and Social Psychology 33, 2 (2014), 125–143.
https://doi.org/10.1177/0261927X13502654 arXiv:https://doi.org/10.1177/0261927X13502654

[97] Peter H. Kahn, Nathan G. Freier, Takayuki Kanda, Hiroshi Ishiguro, Jolina H. Ruckert, Rachel L. Severson, and Shaun K.
Kane. 2008. Design Patterns for Sociality in Human-Robot Interaction. In Proceedings of the 3rd ACM/IEEE International
Conference on Human Robot Interaction (Amsterdam, The Netherlands) (HRI ’08). Association for ComputingMachinery,
New York, NY, USA, 97–104. https://doi.org/10.1145/1349822.1349836

[98] Neha Katira, Laurie Williams, Laurie Williams, Eric Wiebe, Carol Miller, Suzanne Balik, and Ed Gehringer. 2004.
On Understanding Compatibility of Student Pair Programmers. SIGCSE Bull. 36, 1 (March 2004), 7–11. https:
//doi.org/10.1145/1028174.971307

[99] R. K. Kavitha and M. S. Irfan Ahmed. 2013. Knowledge Sharing Through Pair Programming in Learning Environments:
An empirical study. Education and Information Technologies 20, 2 (Oct. 2013), 319–333.

[100] Iman Keivanloo, Juergen Rilling, and Ying Zou. 2014. Spotting Working Code Examples. In Proceedings of the
36th International Conference on Software Engineering (Hyderabad, India) (ICSE 2014). Association for Computing
Machinery, New York, NY, USA, 664–675. https://doi.org/10.1145/2568225.2568292

[101] Kisub Kim, Dongsun Kim, Tegawendé F. Bissyandé, Eunjong Choi, Li Li, Jacques Klein, and Yves Le Traon. 2018.
FaCoY: A Code-to-Code Search Engine. In Proceedings of the 40th International Conference on Software Engineering
(Gothenburg, Sweden) (ICSE ’18). Association for Computing Machinery, New York, NY, USA, 946–957. https:
//doi.org/10.1145/3180155.3180187

[102] Sungdong Kim, Sohee Yang, Gyuwan Kim, and Sang-Woo Lee. 2019. Efficient Dialogue State Tracking by Selectively
Overwriting Memory. arXiv preprint arXiv:1911.03906 (2019).

[103] Lorenz Cuno Klopfenstein, Saverio Delpriori, Silvia Malatini, and Alessandro Bogliolo. 2017. The Rise of Bots: A
Survey of Conversational Interfaces, Patterns, and Paradigms. In Proceedings of the 2017 Conference on Designing
Interactive Systems (Edinburgh, United Kingdom) (DIS ’17). Association for Computing Machinery, New York, NY,
USA, 555–565. https://doi.org/10.1145/3064663.3064672

[104] Avraham N Kluger and Angelo DeNisi. 1996. The effects of feedback interventions on performance: A historical
review, a meta-analysis, and a preliminary feedback intervention theory. Psychological bulletin 119, 2 (1996), 254.

[105] Andrew J. Ko and Brad A. Myers. 2004. Designing the Whyline: A Debugging Interface for Asking Questions About
Program Behavior. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Vienna, Austria)
(CHI ’04). ACM, New York, NY, USA, 151–158. https://doi.org/10.1145/985692.985712

[106] Andrew J. Ko and Brad A. Myers. 2009. Finding Causes of Program Output with the Java Whyline. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (Boston, MA, USA) (CHI ’09). ACM, New York, NY,
USA, 1569–1578. https://doi.org/10.1145/1518701.1518942

, Vol. 1, No. 1, Article . Publication date: September 2021.

https://doi.org/10.1145/3025171.3025198
https://doi.org/10.1145/3287048
https://doi.org/10.1016/j.jvlc.2017.04.005
https://doi.org/10.1109/VLHCC.2015.7357222
https://doi.org/10.1109/VLHCC.2015.7357222
https://doi.org/10.1109/VLHCC.2013.6645252
https://doi.org/10.1109/VLHCC.2013.6645252
https://doi.org/10.1177/0261927X13502654
https://arxiv.org/abs/https://doi.org/10.1177/0261927X13502654
https://doi.org/10.1145/1349822.1349836
https://doi.org/10.1145/1028174.971307
https://doi.org/10.1145/1028174.971307
https://doi.org/10.1145/2568225.2568292
https://doi.org/10.1145/3180155.3180187
https://doi.org/10.1145/3180155.3180187
https://doi.org/10.1145/3064663.3064672
https://doi.org/10.1145/985692.985712
https://doi.org/10.1145/1518701.1518942

1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568

32 Robe, et al.

[107] James A. Kulik and Chen-Lin C. Kulik. 1988. Timing of Feedback and Verbal Learning. Review of Educational Research
58, 1 (1988), 79–97. https://doi.org/10.3102/00346543058001079 arXiv:https://doi.org/10.3102/00346543058001079

[108] Sandeep Kuttal, Kevin Gerstner, and Alexandra Bejarano. 2019. Remote Pair-Programming in Online CS Education:
Investigating through a Gender Lens. IEEE Symposium on Visual Languages & Human-Centric Computing (2019).

[109] S. K. Kuttal, J. Myers, S. Gurka, D. Magar, D. Piorkowski, and R. Bellamy. 2020. Towards Designing Conversational
Agents for Pair Programming: Accounting for Creativity Strategies and Conversational Styles. In 2020 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). 1–11.

[110] Thomas K Landauer. 1987. Psychology as a mother of invention. ACM SIGCHI Bulletin 18, 4 (1987), 333–335.
[111] Hung Le, Richard Socher, and Steven C.H. Hoi. 2020. Non-Autoregressive Dialog State Tracking. In International

Conference on Learning Representations. https://openreview.net/forum?id=H1e_cC4twS
[112] Marvin Levine. 1988. Effective problem solving. Prentice Hall.
[113] Clayton Lewis. 1982. Using the "thinking-aloud" method in cognitive interface design. IBM T.J. Watson Research Center,

Yorktown Heights, N.Y.
[114] Shaofeng Li. 2010. The effectiveness of corrective feedback in SLA: A meta-analysis. Language learning 60, 2 (2010),

309–365.
[115] Dapeng Liu, Andrian Marcus, Denys Poshyvanyk, and Vaclav Rajlich. 2007. Feature location via information retrieval

based filtering of a single scenario execution trace. ASE’07 - 2007 ACM/IEEE International Conference on Automated
Software Engineering, 234–243. https://doi.org/10.1145/1321631.1321667

[116] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-Task Deep Neural Networks for Natural
Language Understanding. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.
4487–4496.

[117] Zhiqiang Liu and Dieter J Schonwetter. 2004. Teaching creativity in engineering. International Journal of Engineering
Education 20, 5 (2004), 801–808.

[118] Ju Long. 2009. Open Source Software Development Experiences on the Students’ Resumes: Do They Count?-Insights
from the Employers’ Perspectives. Journal of Information Technology Education: Research 8, 1 (2009), 229–242.

[119] Irene Lopatovska and Harriet Williams. 2018. Personification of the Amazon Alexa: BFF or a Mindless Companion. In
Proceedings of the 2018 Conference on Human Information Interaction & Retrieval (New Brunswick, NJ, USA) (CHIIR
’18). Association for Computing Machinery, New York, NY, USA, 265–268. https://doi.org/10.1145/3176349.3176868

[120] Ewa Luger and Abigail Sellen. 2016. " Like Having a Really Bad PA" The Gulf between User Expectation and Experience
of Conversational Agents. In Proceedings of the 2016 CHI conference on human factors in computing systems. 5286–5297.

[121] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A. Sergeyev. 2005. Static techniques for concept location in
object-oriented code. In 13th International Workshop on Program Comprehension (IWPC’05). 33–42.

[122] Jennifer Marlow and Laura Dabbish. 2013. Activity traces and signals in software developer recruitment and hiring.
In Proceedings of the 2013 conference on Computer supported cooperative work. ACM, 145–156.

[123] Akane Matsushima, Natsuki Oka, Chie Fukada, and Kazuaki Tanaka. 2019. Understanding Dialogue Acts by Bayesian
Inference and Reinforcement Learning. In Proceedings of the 7th International Conference on Human-Agent Interaction
(Kyoto, Japan) (HAI ’19). Association for Computing Machinery, New York, NY, USA, 262–264. https://doi.org/10.
1145/3349537.3352786

[124] Charlie McDowell, Linda Werner, Heather Bullock, and Julian Fernald. 2002. The Effects of Pair-programming
on Performance in an Introductory Programming Course. In Proceedings of the 33rd SIGCSE Technical Symposium
on Computer Science Education (Cincinnati, Kentucky) (SIGCSE ’02). ACM, New York, NY, USA, 38–42. https:
//doi.org/10.1145/563340.563353

[125] Charlie McDowell, Linda Werner, Heather E. Bullock, and Julian Fernald. 2003. The Impact of Pair Programming
on Student Performance, Perception and Persistence. In Proceedings of the 25th International Conference on Software
Engineering (Portland, Oregon) (ICSE ’03). IEEE Computer Society, Washington, DC, USA, 602–607. http://dl.acm.
org/citation.cfm?id=776816.776899

[126] Phil McMinn. 2004. Search-based software test data generation: a survey: Research Articles. Softw. Test., Verif. Reliab.
14 (06 2004), 105–156. https://doi.org/10.1002/stvr.294

[127] Meiliana, Irwandhi Septian, Ricky Setiawan Alianto, Daniel, and Ford Lumban Gaol. 2017. Automated Test Case
Generation from UML Activity Diagram and Sequence Diagram using Depth First Search Algorithm. Procedia
Computer Science 116 (2017), 629 – 637. https://doi.org/10.1016/j.procs.2017.10.029 Discovery and innovation of
computer science technology in artificial intelligence era: The 2nd International Conference on Computer Science
and Computational Intelligence (ICCSCI 2017).

[128] Grigori Melnik and Frank Maurer. 2002. Perceptions of agile practices: A student survey. In Conference on Extreme
Programming and Agile Methods. Springer, 241–250.

[129] Christopher Mendez, Hema Susmita Padala, Zoe Steine-Hanson, Claudia Hilderbrand, Amber Horvath, Charles Hill,
Logan Simpson, Nupoor Patil, Anita Sarma, and Margaret Burnett. 2018. Open Source Barriers to Entry, Revisited:

, Vol. 1, No. 1, Article . Publication date: September 2021.

https://doi.org/10.3102/00346543058001079
https://arxiv.org/abs/https://doi.org/10.3102/00346543058001079
https://openreview.net/forum?id=H1e_cC4twS
https://doi.org/10.1145/1321631.1321667
https://doi.org/10.1145/3176349.3176868
https://doi.org/10.1145/3349537.3352786
https://doi.org/10.1145/3349537.3352786
https://doi.org/10.1145/563340.563353
https://doi.org/10.1145/563340.563353
http://dl.acm.org/citation.cfm?id=776816.776899
http://dl.acm.org/citation.cfm?id=776816.776899
https://doi.org/10.1002/stvr.294
https://doi.org/10.1016/j.procs.2017.10.029

1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617

Designing PairBuddy – A Conversational Agent for Pair Programming 33

A Sociotechnical Perspective. In Proceedings of the 40th International Conference on Software Engineering. ACM,
1004–1015.

[130] Casey Miller and Kate Swift. 2001. The handbook of nonsexist writing. iUniverse.
[131] Matheus Monteiro, Erica Souza, Andre Endo, and Nandamudi Vijaykumar. 2019. Analyzing graph-based algorithms

employed to generate test cases from finite state machines. https://doi.org/10.1109/LATW.2019.8704603
[132] Dana Movshovitz-Attias, Yair Movshovitz-Attias, Peter Steenkiste, and Christos Faloutsos. 2013. Analysis of the

reputation system and user contributions on a question answering website: Stackoverflow. In Proceedings of the 2013
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. ACM, 886–893.

[133] Susanne van Mulken, Elisabeth André, and Jochen Müller. 1999. An Empirical Study on the Trustworthiness of Life-
like Interface Agents. In Proceedings of the HCI International ’99 (the 8th International Conference on Human-Computer
Interaction) on Human-Computer Interaction: Communication, Cooperation, and Application Design-Volume 2 - Volume
2. L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 152–156. http://dl.acm.org/citation.cfm?id=647944.741893

[134] Magdalene Ng, Kovila PL Coopamootoo, Ehsan Toreini, Mhairi Aitken, Karen Elliot, and Aad van Moorsel. 2020.
Simulating the Effects of Social Presence on Trust, Privacy Concerns\& Usage Intentions in Automated Bots for
Finance. arXiv preprint arXiv:2006.15449 (2020).

[135] Jakob Nielsen and Rolf Molich. 1990. Heuristic evaluation of user interfaces. In Proceedings of the SIGCHI conference
on Human factors in computing systems. 249–256.

[136] Haoran Niu, Iman Keivanloo, and Ying Zou. 2017. Learning to rank code examples for code search engines. Empirical
Software Engineering 22, 1 (2017), 259–291.

[137] John Noll, Sarah Beecham, and Ita Richardson. 2010. Global software development and collaboration: barriers and
solutions. ACM inroads 1, 3 (2010), 66–78.

[138] Catherine S. Oh, Jeremy N. Bailenson, and Gregory F. Welch. 2018. A Systematic Review of Social Presence: Definition,
Antecedents, and Implications. Frontiers in Robotics and AI 5 (2018), 114. https://doi.org/10.3389/frobt.2018.00114

[139] Andy Oram and Greg Wilson. 2010. Making Software: What Really Works, and Why We Believe It (1st ed.). O’Reilly
Media, Inc.

[140] A.F. Osborn. 1957. Applied Imagination: Principles and Procedures of Creative Thinking. Charles Scribner’s Sons.
[141] Carlos Pacheco and Michael D Ernst. 2007. Randoop: feedback-directed random testing for Java. In Companion to the

22nd ACM SIGPLAN conference on Object-oriented programming systems and applications companion. 815–816.
[142] M. Page-Jones. 1988. The Practical Guide to Structured Systems Design. Prentice Hall.
[143] David Walsh Palmieri. 2002. Knowledge Management Through Pair Programming.
[144] George Polya. 2004. How to solve it: A new aspect of mathematical method. Vol. 85. Princeton university press.
[145] M. Raghothaman, Y. Wei, and Y. Hamadi. 2016. SWIM: Synthesizing What I Mean - Code Search and Idiomatic

Snippet Synthesis. In 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE). 357–367.
[146] Vipul Raheja and Joel Tetreault. 2019. Dialogue Act Classification with Context-Aware Self-Attention. In Proceedings

of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). 3727–3733.

[147] Prerana Pradeepkumar Rane. 2017. Automatic generation of test cases for agile using natural language processing. Ph.D.
Dissertation. Virginia Tech.

[148] James L Reinertsen. 2000. Let’s talk about error. BMJ 320, 7237 (2000), 730. https://doi.org/10.1136/bmj.320.7237.730
arXiv:https://www.bmj.com/content/320/7237/730.full.pdf

[149] Ehud Reiter and Robert Dale. 2000. Building natural language generation systems. Cambridge university press.
[150] Liliang Ren, Jianmo Ni, and Julian McAuley. 2019. Scalable and Accurate Dialogue State Tracking via Hierarchical

Sequence Generation. arXiv preprint arXiv:1909.00754 (2019).
[151] P. Robe, S. Kaur Kuttal, Y. Zhang, and R. Bellamy. 2020. Can Machine Learning Facilitate Remote Pair Programming?

Challenges, Insights Implications. In 2020 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). 1–11.

[152] Fernando J. Rodríguez, Kimberly Michelle Price, and Kristy Elizabeth Boyer. 2017. Exploring the Pair Programming
Process: Characteristics of Effective Collaboration. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (Seattle, Washington, USA) (SIGCSE ’17). ACM, New York, NY, USA, 507–512. https:
//doi.org/10.1145/3017680.3017748

[153] Carl Ransom Rogers and Richard Evans Farson. 1957. Active listening. Industrial Relations Center of the University of
Chicago Chicago, IL.

[154] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea Arcuri. 2015. Combining multiple coverage
criteria in search-based unit test generation. In International Symposium on Search Based Software Engineering. Springer,
93–108.

[155] Sherry Ruan, Jacob O. Wobbrock, Kenny Liou, Andrew Ng, and James A. Landay. 2018. Comparing Speech and
Keyboard Text Entry for Short Messages in Two Languages on Touchscreen Phones. Proc. ACM Interact. Mob. Wearable

, Vol. 1, No. 1, Article . Publication date: September 2021.

https://doi.org/10.1109/LATW.2019.8704603
http://dl.acm.org/citation.cfm?id=647944.741893
https://doi.org/10.3389/frobt.2018.00114
https://doi.org/10.1136/bmj.320.7237.730
https://arxiv.org/abs/https://www.bmj.com/content/320/7237/730.full.pdf
https://doi.org/10.1145/3017680.3017748
https://doi.org/10.1145/3017680.3017748

1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

34 Robe, et al.

Ubiquitous Technol. 1, 4, Article 159 (Jan. 2018), 23 pages. https://doi.org/10.1145/3161187
[156] Omar Ruvalcaba, Linda Werner, and Jill Denner. 2016. Observations of Pair Programming: Variations in Collaboration

Across Demographic Groups. In Proceedings of the 47th ACM Technical Symposium on Computing Science Education
(Memphis, Tennessee, USA) (SIGCSE ’16). ACM, New York, NY, USA, 90–95. https://doi.org/10.1145/2839509.2844558

[157] Anita Sarma, Xiaofan Chen, Sandeep Kuttal, Laura Dabbish, and Zhendong Wang. 2016. Hiring in the global stage:
Profiles of online contributions. In Global Software Engineering (ICGSE), 2016 IEEE 11th International Conference on.
IEEE, 1–10.

[158] T. Savage, M. Revelle, and D. Poshyvanyk. 2010. FLAT3: feature location and textual tracing tool. In 2010 ACM/IEEE
32nd International Conference on Software Engineering, Vol. 2. 255–258.

[159] Marvin L Schroth and Elissa Lund. 1993. Role of delay of feedback on subsequent pattern recognition transfer tasks.
Contemporary Educational Psychology 18, 1 (1993), 15–22.

[160] Carolyn B. Seaman. 1999. Qualitative methods in empirical studies of software engineering. IEEE Transactions on
software engineering 25, 4 (1999), 557–572.

[161] Michael Seymour, Kai Riemer, and Judy Kay. 2017. Interactive Realistic Digital Avatars-Revisiting the Uncanny Valley.
(2017).

[162] Arun Shekhar and Nicola Marsden. 2018. Cognitive Walkthrough of a Learning Management System with Gendered
Personas. In Proceedings of the 4th Conference on Gender & IT. ACM, 191–198.

[163] Ben Shneiderman. 1982. Designing computer system messages. Commun. ACM 25, 9 (1982), 610–611.
[164] Leif Singer, Fernando Figueira Filho, Brendan Cleary, Christoph Treude, Margaret-Anne Storey, and Kurt Schneider.

2013. Mutual assessment in the social programmer ecosystem: An empirical investigation of developer profile
aggregators. In Proceedings of the 2013 conference on Computer supported cooperative work. ACM, 103–116.

[165] Social Bot [n.d.]. Chatbot Statistics. https://www.smallbizgenius.net/by-the-numbers/chatbot-statistics/#gref
[166] Social Bot [n.d.]. Cleverbot. https://www.cleverbot.com/
[167] Social Bot [n.d.]. Mitsuku. https://www.pandorabots.com/mitsuku/
[168] Social Bot [n.d.]. SAP Conversational AI. https://www.sap.com/products/conversational-ai.html
[169] Social Bot [n.d.]. Xiaoice AI Assistant. https://www.digitaltrends.com/cool-tech/xiaoice-microsoft-future-of-ai-

assistants/
[170] Social Media Website [n.d.]. Discord. www.discord.com
[171] Social Media Website [n.d.]. Facebook. www.facebook.com
[172] Social Media Website [n.d.]. Google Hangouts. www.hangouts.google.com
[173] Social Media Website [n.d.]. Skype. www.skype.com
[174] Social Media Website [n.d.]. Twitter. www.twitter.com
[175] Software Application [n.d.]. Electron | Build cross-platform desktop apps with JavaScript, HTML, and CSS. https:

//www.electronjs.org/
[176] Software Application [n.d.]. Facerig. https://facerig.com/
[177] Software Application [n.d.]. VB-Audio VoiceMeeter. https://vb-audio.com/Voicemeeter/
[178] Jörg Spieler. [n.d.]. UCDetector. http://www.ucdetector.org/
[179] Lee Sproull, Mani Subramani, Sara Kiesler, Janet H. Walker, and Keith Waters. 1996. When the Interface is a Face.

Hum.-Comput. Interact. 11, 2 (June 1996), 97–124. https://doi.org/10.1207/s15327051hci1102_1
[180] Saiying Steenbergen-Hu and Harris Cooper. 2014. A meta-analysis of the effectiveness of intelligent tutoring systems

on college students’ academic learning. Journal of Educational Psychology 106, 2 (2014), 331.
[181] Persis T Sturges. 1972. Information delay and retention: Effect of information in feedback and tests. Journal of

Educational Psychology 63, 1 (1972), 32.
[182] Linda K Swindell and Walter F Walls. 1993. Response confidence and the delay retention effect. Contemporary

Educational Psychology 18, 3 (1993), 363–375.
[183] Ryuichi Takanobu, Runze Liang, and Minlie Huang. 2020. Multi-agent task-oriented dialog policy learning with

role-aware reward decomposition. arXiv preprint arXiv:2004.03809 (2020).
[184] Diana-Cezara Toader, Grat, iela Boca, Rita Toader, Mara Măcelaru, Cezar Toader, Diana Ighian, and Adrian T. Rădulescu.

2019. The Effect of Social Presence and Chatbot Errors on Trust. Sustainability 12, 1 (Dec 2019), 256. https:
//doi.org/10.3390/su12010256

[185] Susanne van Mulken, Elisabeth André, and Jochen Müller. 1998. The Persona Effect: How Substantial Is It?. In People
and Computers XIII, Hilary Johnson, Lawrence Nigay, and Christopher Roast (Eds.). Springer London, London, 53–66.

[186] Kurt VanLehn. 2011. The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Systems, and Other Tutoring
Systems. Educational Psychologist 46, 4 (2011), 197–221. https://doi.org/10.1080/00461520.2011.611369

[187] Nicolas Vermeulen, Olivier Corneille, and Paula M. Niedenthal. 2008. Sensory load incurs conceptual processing
costs. Cognition 109, 2 (2008), 287 – 294. https://doi.org/10.1016/j.cognition.2008.09.004

[188] Virtual Assistant [n.d.]. Amazon Alexa. https://developer.amazon.com/en-US/alexa

, Vol. 1, No. 1, Article . Publication date: September 2021.

https://doi.org/10.1145/3161187
https://doi.org/10.1145/2839509.2844558
https://www.smallbizgenius.net/by-the-numbers/chatbot-statistics/#gref
https://www.cleverbot.com/
https://www.pandorabots.com/mitsuku/
https://www.sap.com/products/conversational-ai.html
https://www.digitaltrends.com/cool-tech/xiaoice-microsoft-future-of-ai- assistants/
https://www.digitaltrends.com/cool-tech/xiaoice-microsoft-future-of-ai- assistants/
www.discord.com
www.facebook.com
www.hangouts.google.com
www.skype.com
www.twitter.com
https://www.electronjs.org/
https://www.electronjs.org/
https://facerig.com/
https://vb-audio.com/Voicemeeter/
http://www.ucdetector.org/
https://doi.org/10.1207/s15327051hci1102_1
https://doi.org/10.3390/su12010256
https://doi.org/10.3390/su12010256
https://doi.org/10.1080/00461520.2011.611369
https://doi.org/10.1016/j.cognition.2008.09.004
https://developer.amazon.com/en-US/alexa

1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

Designing PairBuddy – A Conversational Agent for Pair Programming 35

[189] Virtual Assistant [n.d.]. Apple Siri. https://www.apple.com/siri/
[190] Virtual Assistant [n.d.]. Google Assistant. https://assistant.google.com/
[191] Virtual Assistant [n.d.]. IBM Watson Assistant. https://cloud.ibm.com/apidocs/assistant/assistant-v2
[192] Virtual Assistant [n.d.]. Oracle Digital Assistant. https://www.oracle.com/solutions/chatbots/
[193] Aurora Vizcaíno. 2005. A Simulated Student Can Improve Collaborative Learning. Int. J. Artif. Intell. Ed. 15, 1 (Jan.

2005), 3–40.
[194] Tony Wagner and Robert A Compton. 2012. Creating innovators: The making of young people who will change the

world. Simon and Schuster.
[195] Pierre Wargnier, Giovanni Carletti, Yann Laurent-Corniquet, Samuel Benveniste, Pierre Jouvelot, and Anne-Sophie

Rigaud. 2016. Field evaluation with cognitively-impaired older adults of attention management in the embodied
conversational agent louise. In 2016 IEEE International Conference on Serious Games and Applications for Health
(SeGAH). IEEE, 1–8.

[196] Website [n.d.]. Bing QA. https://www.microsoft.com/en-us/research/project/open-domain-question-answering/
[197] Linda L. Werner, Brian Hanks, and Charlie McDowell. 2004. Pair-programming Helps Female Computer Science

Students. J. Educ. Resour. Comput. 4, 1, Article 4 (March 2004). https://doi.org/10.1145/1060071.1060075
[198] Wayne AWickelgren. 1974. How to solve problems: Elements of a theory of problems and problem solving. WH Freeman

San Francisco.
[199] Laurie Williams and Bob Kessler. 2000. The Effects of "Pair-Pressure" and "Pair-Learning" on Software Engineering

Education. In Proceedings of the 13th Conference on Software Engineering Education & Training (CSEET ’00). IEEE
Computer Society, Washington, DC, USA, 59–. http://dl.acm.org/citation.cfm?id=794188.794326

[200] Laurie Williams and Robert Kessler. 2002. Pair Programming Illuminated. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

[201] L. Williams, C. McDowell, N. Nagappan, J. Fernald, and L. Werner. 2003. Building pair programming knowledge
through a family of experiments. In 2003 International Symposium on Empirical Software Engineering, 2003. ISESE 2003.
Proceedings. 143–152. https://doi.org/10.1109/ISESE.2003.1237973

[202] Laurie A. Williams, Eric N. Wiebe, Kai Yang, Miriam Ferzli, and Carol Miller. 2002. In Support of Pair Programming
in the Introductory Computer Science Course. Computer Science Education 12 (2002), 197–212.

[203] James Wilson and Daniel Rosenberg. 1988. Rapid prototyping for user interface design. In Handbook of human-
computer interaction. Elsevier, 859–875.

[204] Ian H Witten, Craig G Nevill-Manning, and DL Maulsby. 1996. Interacting with learning agents: implications for ml
from hci. InWorkshop on Machine Learning meets Human-Computer Interaction, ML, Vol. 96. 51–58.

[205] Qingyang Wu, Yichi Zhang, Yu Li, and Zhou Yu. 2019. Alternating Recurrent Dialog Model with Large-scale
Pre-trained Language Models. arXiv preprint arXiv:1910.03756 (2019).

[206] Yvonne Wærn and Robert Ramberg. 1996. People’s perception of human and computer advice. Computers in Human
Behavior 12, 1 (1996), 17 – 27. https://doi.org/10.1016/0747-5632(95)00016-X

[207] Zhilin Yang, ZihangDai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, andQuoc V Le. 2019. XLNet: Generalized
Autoregressive Pretraining for Language Understanding. In Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 5753–
5763. http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.
pdf

[208] Nick Yee, Jeremy N Bailenson, and Kathryn Rickertsen. 2007. A Meta-analysis of the Impact of the Inclusion
and Realism of Human-like Faces on User Experiences in Interfaces. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (San Jose, California, USA) (CHI ’07). ACM, New York, NY, USA, 1–10. https:
//doi.org/10.1145/1240624.1240626

[209] Mohan Zalake, Julia Woodward, Amanpreet Kapoor, and Benjamin Lok. 2018. Assessing the Impact of Virtual
Human’s Appearance on Users’ Trust Levels. In Proceedings of the 18th International Conference on Intelligent Virtual
Agents (Sydney, NSW, Australia) (IVA ’18). Association for Computing Machinery, New York, NY, USA, 329–330.
https://doi.org/10.1145/3267851.3267863

[210] Jiaping Zhang, Tiancheng Zhao, and Zhou Yu. 2018. Multimodal hierarchical reinforcement learning policy for
task-oriented visual dialog. arXiv preprint arXiv:1805.03257 (2018).

[211] Yichi Zhang, Zhijian Ou, and Zhou Yu. 2019. Task-Oriented Dialog Systems that Consider Multiple Appropriate
Responses under the Same Context. arXiv preprint arXiv:1911.10484 (2019).

[212] Yong Zhao. 2012. World class learners: Educating creative and entrepreneurial students. Corwin Press.
[213] R. Zhi, S. Marwan, Y. Dong, N. Lytle, T. W. Price, and T. Barnes. 2019. Toward Data-Driven Example Feedback for

Novice Programming. In Proceedings of the 12th International Conference on Educational Data Mining.
[214] C. Zhou, S. K. Kuttal, and I. Ahmed. 2018. What Makes a Good Developer? An Empirical Study of Developers’

Technical and Social Competencies. In 2018 IEEE Symposium on Visual Languages and Human-Centric Computing

, Vol. 1, No. 1, Article . Publication date: September 2021.

https://www.apple.com/siri/
https://assistant.google.com/
https://cloud.ibm.com/apidocs/assistant/assistant-v2
https://www.oracle.com/solutions/chatbots/
https://www.microsoft.com/en-us/research/project/open-domain-question-answering/
https://doi.org/10.1145/1060071.1060075
http://dl.acm.org/citation.cfm?id=794188.794326
https://doi.org/10.1109/ISESE.2003.1237973
https://doi.org/10.1016/0747-5632(95)00016-X
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf
https://doi.org/10.1145/1240624.1240626
https://doi.org/10.1145/1240624.1240626
https://doi.org/10.1145/3267851.3267863

1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764

36 Robe, et al.

(VL/HCC). 319–321.
[215] Su Zhu, Jieyu Li, Lu Chen, and Kai Yu. 2020. Efficient Context and Schema Fusion Networks for Multi-Domain

Dialogue State Tracking. arXiv preprint arXiv:2004.03386 (2020).
[216] Franz Zieris and Lutz Prechelt. 2014. On Knowledge Transfer Skill in Pair Programming. In Proceedings of the 8th

ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (Torino, Italy) (ESEM ’14).
ACM, New York, NY, USA, Article 11, 10 pages. https://doi.org/10.1145/2652524.2652529

7 AUTHOR STATEMENT
This work is not related to any prior or concurrent publications, and its contributions stand on its
own.

, Vol. 1, No. 1, Article . Publication date: September 2021.

https://doi.org/10.1145/2652524.2652529

	Abstract
	1 Introduction
	1.1 Motivational Scenario
	1.2 Challenges

	2 Wizard of Oz Studies
	3 Pilot Study (Iteration 1)
	3.1 PairBuddy Design (Iteration 1)
	3.2 Wizard/PairBuddy Implementation
	3.3 Participants
	3.4 Study Design
	3.5 Data Analysis
	3.6 Results
	3.7 Lessons Learned

	4 Main Study (Iteration 2)
	4.1 PairBuddy Design (Iteration 2)
	4.2 Wizard/PairBuddy Implementation
	4.3 Participants
	4.4 Study Design
	4.5 Data Analysis
	4.6 Limitations
	4.7 Results

	5 Discussions and Future Work
	6 Conclusion
	Acknowledgments
	References
	7 Author Statement

