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Designing PairBuddy – A Conversational Agent for Pair
Programming

PETER ROBE, University of Tulsa
SANDEEP KAUR KUTTAL, University of Tulsa

From automated customer support to virtual assistants, conversational agents have transformed everyday
interactions, yet despite phenomenal progress, no agent exists for programming tasks. To understand the
design space of such an agent, we prototype PairBuddy – an interactive pair programming partner – based on
research from conversational agents, software engineering, education, human-robot interactions, psychology,
and artificial intelligence. We iterated PairBuddy’s design using a series of Wizard-of-Oz studies. Our pilot
study of six programmers showed promising results and provided insights toward PairBuddy’s interface
design. Our second study of fourteen programmers was positively praised across all skill levels. PairBuddy’s
active application of soft skills – adaptability, motivation, and social presence – as a navigator increased
participants’ confidence and trust, while its technical skills – code contributions, just-in-time feedback, and
creativity support – as a driver helped participants realize their own solutions. PairBuddy takes the first step
towards an Alexa-like programming partner.

CCS Concepts: • Human-centered computing→ User studies.

Additional Key Words and Phrases: Conversational agents, pair programming, user centered design, Wizard
of Oz.
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1 INTRODUCTION
Conversational agents allow humans to use natural language to directly interface with computer
agents such as virtual assistants (e.g., Apple’s Siri [189], Google Assistant [190], and Amazon’s Alexa
[188]), customer support agents, or individual/social chatbots (e.g., Mitsuku [167], Cleverbot [166],
and XiaoIce [169]). Conversational agents mimic human conversations, establish more personal
connections, and can even increase accessibility for people with physical disabilities or language
barriers. For businesses, conversational agents personalize customer experience, while bringing
down operational costs. Today, a full two-thirds of the most popular websites use conversational
agents to interact with users and address their needs [165]. Despite the phenomenal penetration of
conversational agents in domains ranging from business to personal use and entertainment, no
conversational agents exist for computer programming tasks.
In this paper, we take the first step towards the creation of “PairBuddy” – a conversational

agent that enables interactive communication between a human programmer and a computer. We
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2 Robe, et al.

Fig. 1. Tiana interacting with PairBuddy.

designed PairBuddy to promote effective programming by using “pair programming,” an established
collaboration technique used in education and the industry.

In pair programming, two programmers work collaboratively on the same design, algorithm, code,
or test [143, 200, 201]. Programmers switch between the roles of driver (writing code) and navigator
(making suggestions). Pair programming provides a variety of benefits, including increased code
quality, productivity, creativity, knowledge management, and self-efficacy [20, 33, 40, 47, 51, 98,
124, 125, 143, 152, 156, 197, 200–202, 216]. It even has the potential to reduce gender prejudice by
encouraging women to pursue computer science [197]. Pair programming increases programmers’
contemporary skills, understanding of fundamental concepts, and intellectual pursuits [33, 124,
152, 156, 197]. However, pair programming has certain limitations including scheduling difficulties,
collocating pairs, student resistance to pairing, and the dependency on a partner’s programming
abilities [68, 82, 139, 199]. We conjecture that PairBuddy’s design will promote the benefits of pair
programming while reducing its limitations.

1.1 Motivational Scenario
To motivate the need and inform the abilities of PairBuddy, we provide the following scenario:

Tiana is a junior CS student who enjoys pair programming, but due COVID-19, she has to return
home. Given the physical and time-zone differences, scheduling pair programming sessions is hard.
Additionally, all of her potential partners either like to work solo, have incompatible cognitive styles,
criticize without providing solutions (e.g., “We definitely cannot finish this” ), are overly competitive,
take credit for Tiana’s work, or have other problematic habits. As a result, their sessions with Tiana
are stressful and unproductive, resulting in the loss of pair programming’s benefits. Fortunately,
Tiana can use PairBuddy (Figure 1).

Tiana can collaborate with PairBuddy, switching between the roles of driver and navigator to
create test cases, write code, and refactor code. Additionally, PairBuddy: 1) is unbiased toward
Tiana’s gender, ethnicity, and socio-economic status; 2) motivates and encourages her hard work;
3) gives non-judgemental feedback, allowing Tiana to ignore or disagree without the risk of hurt
feelings; 4) provides a sense of security through its active listening and engagement through both
voice and text; 5) encourages and instills healthy problem-solving and creative styles; and 6) avoids
dominating power dynamics by balancing pair programming roles. For these reasons and more,
Tiana prefers PairBuddy as her programming partner to complete difficult assignments comfortably
and effectively.

1.2 Challenges
Since no pair programming conversational agents exist, the challenges of creating such an agent
include:
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Designing PairBuddy – A Conversational Agent for Pair Programming 3

(1) AnUnknownDesign – Interface and Interactions: PairBuddy’s interface and interaction
design must be explored due to the unique properties of pair programming dialogue [151]. To
support programmer-computer interaction, PairBuddy must imitate an effective programmer
by integrating a multitude of technical and soft skills, including diverse problem-solving and
creative strategies. Therefore, PairBuddy’s design must be informed from multi-disciplinary
research.

(2) A Specific Domain – Software Development: PairBuddy needs to be created for the spe-
cific domain of software development, which remains relatively unexplored by conversational
agent research. Developing software is unique, as it demands the synthesis of requirements;
the generation and development of solutions; and the implementation, testing and refactoring
of code. Therefore, pre-existing conversational agents cannot be directly modified for pro-
gramming, and instead, a new paradigm must emerge to support programmer collaboration
with an agent. This shift in approach must be informed from software engineering and
education. Specifically, we consider literature on Intelligent Tutoring Systems to integrate
the programming and educational aspects of pair programming.

(3) A Specific Userbase – Programmers:
Programmers are a unique population that have yet to be studied in the realm of conversational
agents. From students to professionals, programmers’ experiences are diverse; some may
use agents to learn programming concepts, while others may develop those same agents. To
design PairBuddy for both populations, we must conduct user studies to fully understand the
breadth of expectations, preferences, and needs of programmers.

These challenges necessitate a review of existing research on human-computer interactions, human-
robotic interactions, software engineering, conversational agents, artificial intelligence, intelligent
tutoring systems, education, psychology, cognitive science, and management science to inform the
design of PairBuddy.

2 WIZARD OF OZ STUDIES
Due to the limited available research on pair programming conversational agents, we used an
iterative approach to understand and design PairBuddy through a series of twoWizard of Oz studies
with programmers.

In a Wizard of Oz study, participants interact with an agent whose actions are secretly controlled
by a human “wizard.” Wizard of Oz is a rapid-prototyping method that examines interfaces that are
technically demanding or are yet to be created [76]. It helps develop user-friendly interfaces that
promote natural language dialogue, consider the unique qualities of human-agent interaction as
distinct from normal human discourse [45], and study user interactions with conversational agents
[22, 25, 195]. Wizard of Oz efficiently creates the functionality of a product before it is refined via
testing [110, 203].

Choosing Wizard of Oz studies helps us investigate the design space of PairBuddy before starting
the implementation, as creating a fully functional conversational agent requires: 1) understanding
the domain of pair programming conversational agents, 2) collecting pair programming data used
to train the machine learning models of such an agent, and 3) designing and implementing a
custom conversational agent architecture including the application of multiple machine-learning
algorithms [69]. Additionally, platforms for developing conversational agents such as IBM Watson
Assistant [191], SAP Conversational AI [168], and Oracle Digital Assistant [192] cannot be used
due to their focus on simple/basic enterprise problems such as answering questions and solving
tasks based on web or enterprise data.
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4 Robe, et al.

In the words of human-computer interaction expert Jef Raskin, “Once the product’s task is known,
design the interface first; then implement to the interface design.” Therefore, we used the Wizard of Oz
paradigm to simulate PairBuddy’s interface and interactions as we explored the design space of pair
programming conversational agents. For the remainder of this paper, we use the term “PairBuddy”
to refer to “the wizard’s simulation of PairBuddy.”

Our user-centered approach involved the exploration and evaluation of PairBuddy’s design using
two iterations of Wizard of Oz studies with programmers. For the first iteration, we conducted an
exploratory pilot study with six university students focused on the initial design of PairBuddy’s
interface and interactions. For the second iteration, a larger study of fourteen university students
and professional programmers evaluated a variety of design decisions informed from the pilot
study and existing research.

3 PILOT STUDY (ITERATION 1)
The pilot study provided valuable feedback from programmers for the initial design of PairBuddy.
The insights gathered from the pilot study served as a first step toward the exploration of the design
space of pair programming conversational agents as well as a starting point for future iterations.

3.1 PairBuddy Design (Iteration 1)
PairBuddy’s initial iteration primarily served to study its interface and interaction design, so we
focused our research review on literature that pertained to agent design, human-robotic interactions,
embodiment, software engineering, management science, intelligent tutoring systems, education,
cognitive science, psychology, and gender-bias in agent design. Table 1 lists the design decisions
made for PairBuddy’s interactions and features in the pilot study, and are as follows:

Design: Creating the Interface and Interactions
PairBuddy was designed to include anthropomorphic characteristics in its interface and interac-

tions.
(A) Interface – Embodiment via Avatar, Gender, Voice, and Text:

PairBuddy communicated with participants by means of avatar, voice, and text to enhance
human-computer interaction. An avatar was incorporated in the design because avatars make
the interface more human [179] and improve understanding, engagement, and trust in novice
programmers [119, 179, 209]. Furthermore, embodiment through avatars can facilitate non-verbal
communication in order [19, 32] to help maintain effective pair programming relationships. Agents
with avatars are given more personality attributes than those without them [179], but at the cost of
heightened expectations [119]. They are particularly important to establishing first impressions
[21]. Therefore, we formulated design decision F1: PairBuddy will be embodied by a 3D avatar.
The inevitable gendered attributes spawned from conversational agent embodiment are the

target of similar gender-biases present in the real world. Particularly, female conversational agents
are more often the target of negative stereotypes, sexual attention, and profanities than male
agents [26]. However, they’re also more likely to be forgiven, even if satisfaction ultimately doesn’t
change [184]. Additionally, female programmers have voiced concerns about pair programming
with male partners [38] due to the expectation of being stereotyped for their gender. To analyze
potential gender preferences and bias, we formulated design decision F2: Participants can toggle
the agent between the two most common genders. While research has looked at gender bias within
conversational agents and pair programming separately, we combine the analysis by evaluating
participants’ gender preferences for a pair programming conversational agent.
The choice between voice or text for an agent’s interface depends on the use case. While text-

only interfaces are less intrusive (e.g., website support), research [21, 31] has shown that voice
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Designing PairBuddy – A Conversational Agent for Pair Programming 5

interfaces increase users’ trust in conversational agents. Additionally, cognitive science research
has demonstrated that simultaneously sharing the same sensory modality for both short-term
memory and active-use negatively affects response and accuracy rates under high-load conditions
[187]. These findings suggests that using audio responses can help reduce programmers’ cognitive
load since it does not share the same sensory modality as viewing code. Additionally, the absence
of a text chat saves additional screen space and reduces context switching between applications.
For our design decisions F3 and F4, we explored input modality by supporting both methods of
communication, allowing messages to arrive to/from the agent via both voice and text.
(B) Interactions – Indirect Driving, Timed Feedback, and Adapted Skill:

In effective pair programming, both partners directly contribute to the code as drivers. However,
if PairBuddy makes a mistake and overwrites code, it could become difficult for participants to undo.
Since a prominent principle of HCI is that users should remain in control of their work [7, 14, 204],
we formulated design decision I1: As a driver, PairBuddy will make indirect contributions through
text messages so that participants can reference and modify the code themselves.
Feedback has substantial impact on learning and achievement [85, 86, 104, 114]. Among its

influential properties is the timing of the feedback. Psychological research suggests that feedback
on difficult concepts should be delayed, while feedback on simple concepts is more beneficial
when immediate [24, 107, 159, 181, 182]. For example, interactive development environments (IDEs)
already provide instant feedback via error highlighting, but when a programmer uses a misguided
approach, delayed feedback is preferred to allow them time to evaluate the feasibility of their ideas.
Therefore, we formulated design decision I2: PairBuddy will provide timed feedback [14]. With
this decision, we hope to minimize unnecessary interruptions.

To balance pair programming roles, PairBuddy would adapt to each participant’s skill-level. Just
as PairBuddy seeks to replace a human pair programming partner, Intelligent Tutoring Systems
(ITS) look to elicit the same effects as a human tutor [43, 59, 186]. ITSs have shown to increase
student performance, and can even outperform human tutoring [180]. Like PairBuddy, Vizcaino et
al. [193] designed HABIPRO, a simulated student and co-learner, to teach computer science. While
HABIPRO did not pair program, it guided students’ behavior by utilizing a learner model [35] to
represent and track students’ knowledge and progress. In the same way that ITSs adapt to learners’
knowledge, we formulated design decision I3: PairBuddy’s skill level will adapt to each participant
such that contributions remain balanced [14]. Pair programming research informs this decision
since programmers prefer when their partner is equally or more competent [128].

Programmer: Integrating Technical and Soft Skills
PairBuddy will imitate the characteristics of a programmer. Programmers’ technical and soft

skills are crucial for being effective team members [10, 44, 137, 214] and are used by managers to
make hiring decisions [118, 122, 132, 157, 164]. Hence, we integrated both types of skills to reflect
a programmer’s capabilities.
(A) Soft Skills – Greeting and Motivation:

While greetings vary between cultures, humans introduce themselves to make their presence
known and to start conversations. Similarly for agents, Kahn et al. [97] identifies “The Initial
Introduction” design pattern where agents use scripted, conventional introductions to recognize
and inquire about another. It is an important design choice in human-robotic interaction, as it
allows a deepening of relationships while removing initial awkwardness. Based on this researched
design pattern, we formulated design decision S1: PairBuddy will introduce itself and greet the
participant [14].

Motivation is seen as a driving force that has a substantial impact on a programmer’s performance
and productivity [13, 34], and comes from either intrinsic or extrinsic sources [34, 49]. Designing
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Table 1. Design decisions evaluated in the pilot study.

ID Design Decision Description Example Sources
Interface

F1 Avatar Embodied by a dynamic 3D avatar [19, 21, 32, 119, 179, 209]
F2 Gender Gender can be toggled [26, 38, 184]
F3 Voice Communicate via voice synthesis [21, 31, 187]
F4 Text Chat Communicate via shared text chat
Interaction

I1 Indirect Driving Send code via text chat [7, 14, 204]
I2 Timed Feedback Feedback at appropriate time [24, 104, 107, 114, 159]
I3 Adapted Skill Balance contributions with partner [14, 43, 59, 186, 193]
Soft Skills

S1 Greeting Introduce itself [97]
S2 Motivation Encourage, recognize, comfort, commend [13, 34, 49, 63]
Technical Skills

T1 Write/Feedback Tests Generate test cases & feedback [12, 58, 126, 127, 131, 147]
T2 Write Code Examples from online repositories [100, 101, 136, 145]
T3 Guidance Provide direction via user stories

extrinsic motivators that synergize with intrinsic motivators requires supporting a person’s sense
of competence without undermining their self-determination [13]. Fischer et al. [63] found that a
higher perceived probability of receiving extrinsic motivation in the form of relational rewards (e.g.,
praise, recognition, performance feedback) [16] often positively affected creative and innovative
outcomes. Therefore, we formulated design decision S2: PairBuddy will motivate using relational
rewards in the form of encouragement (e.g., “We’ve got this!” ), recognition (e.g., “I see, good idea!” ),
and comforting (e.g., “That’s okay, everyone makes mistakes” ). Additionally, extrinsic motivation is
most effective during the stages of the creative process that make the most meaningful contributions
to the project [13]. Therefore, PairBuddy will commend success through relational rewards such as,
“I knew we could do it!” or “We make a great team!”.
(B) Technical Skills – Writing Tests/Code and Giving Guidance:

PairBuddy can generate test cases (i.e., a code fragment that specifies inputs and expected results
to verify compliance with a requirement [1]) using search-based techniques and requirement arti-
facts. Search-based software testing uses a variety of search algorithms [126, 127, 131] to determine
the most efficient path through source code that maximizes code coverage for automatic test case
generation [12]. Additionally, research has demonstrated the feasibility of converting requirement
artifacts such as user stories (i.e., a description of a requirement from a user’s perspective [2]),
acceptance criteria (i.e., the boundaries of a user story [1]), and scenarios (i.e., step-by-step de-
scription of a series of events [1]) into test cases [58, 147]. Based on this research, we formulated
design decision T1: As a driver, PairBuddy can generate test cases automatically. As a navigator,
PairBuddy can give feedback and answer programmers’ queries based on the generated solutions.
For example, PairBuddy could offer help by asking, “Would you like me to generate a test case?”
To further PairBuddy’s competency as a driver, we formulated design decision T2: PairBuddy

will provide example code from online repositories (e.g., GitHub [3]), question & answer forums
(e.g., Stack Overflow [6]), and package documentation. For example, PairBuddy might send sample
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Designing PairBuddy – A Conversational Agent for Pair Programming 7

Fig. 2. The pilot study’s interface including the Eclipse IDE, text chat, and avatar. Note that each participant
only saw one avatar.

code from GitHub into the text chat and ask, “Is this code example from online useful?” Code-
querying and semantic similarity algorithms allow for the collection and querying of online code
repositories. Past research [100, 101, 136, 145] identifies techniques to search online repositories
for semantically similar code. However, these algorithms are not always perfect, so to simulate a
realistic implementation, PairBuddy’s code recommendations were not an exact match with the
task.
To allow PairBuddy to guide participants, we formulated design decision T3: PairBuddy will

use user stories as a basis to track and direct the current objective, encouraging participants to
reference them when determining how to proceed. Additionally, PairBuddy might need to ask
the participant, “What user story is that?” when the current objective is unclear from PairBuddy’s
perspective. This clarifying dialogue serves a second purpose: participants are forced to refocus on
the user stories, and reorient themselves toward the task’s goal.

3.2 Wizard/PairBuddy Implementation
The wizard’s interface and implementation integrated the aforementioned design decisions into
the wizard’s script and interface for the pilot study, and are detailed as follows:

PairBuddy’s interfacewas implementedwithin the Eclipse IDE [54] using amodified version of the
Saros plugin [56], allowing both voice and text communication. Directly integrating these features
allowed participants to seamlessly interact with PairBuddy. The wizard used Saros to monitor the
participant’s code, but made code contributions via the text chat. PairBuddy was embodied by a 3D
avatar via FACSvatar [60]. Using custom networking code, FACSvatar mapped the wizard’s facial
animations onto PairBuddy’s avatar from a remote location, while PairBuddy’s voice was generated
using Google Text-to-Speech [80]. The wizard secretly monitored the participant’s webcam and
microphone using FFmpeg [62]. While participants were free to change the arrangement of the IDE
and avatar windows, none of them did. Figure 2 shows a screenshot of the participant’s interface,
including the Eclipse IDE and either the man or woman avatar.
The wizard also simulated the back end design of PairBuddy, including common components

of conversational agent architecture [69] such as intent classification [9, 53, 116, 123, 146, 207],
dialogue state tracking [102, 111, 150, 215], dialogue policy [88, 183, 205, 211], and natural language
generation [81, 149]. For example, if the participant said, “This is why I hate coding!”, PairBuddy
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Table 2. Demographics of the pilot study participants.

P# Age Gender Education Programming Experience
PG1 24-29 Man PhD 4+ years
PG2 30-40 Man PhD 4+ years
PG3 24-29 Man Masters 4+ years
PU4 19-23 Man Undergrad <1 year
PU5 19-23 Woman Undergrad <1 year
PU6 19 Man Undergrad <1 year

would understand their words using text-to-speech, classify the intent as “Negative Feedback,”
and log their difficulties in the dialogue state tracker. In response, PairBuddy would decide to
“Give Motivation” based on its dialogue policy, and respond with “Don’t give up, you are almost
there!” using natural language generation. The wizard adhered to a script, which served to simulate
the robotic nature of conversational agents, and contained a limited selection of dialogue for the
wizard to use. Dialogue was templated according to Shneiderman’s guidelines [163] and Neilsen’s
heuristics [135]. Since communication styles differ by gender [108], we provide gender-inclusive
language [61, 130] in our script including non-authoritative suggestions [161] to both engage and
motivate programmers.

The wizard exhibited a realistic level of intelligence. If participants asked questions beyond the
protocol, the wizard answered, “I’m afraid logic isn’t my strong suit,” to simulate the behavior of
a potentially automated system [14]. However, to maintain participants’ trust and engagement,
we designed PairBuddy to give alternative contributions if it could not directly answer queries.
Furthermore, the script was designed to vary the responses for the same intent. For example,
motivational scripts included, “We’ve got this!” along with five or more such dialogue templates so
participants wouldn’t receive repeated phrases from PairBuddy. In general, the script served to
simulate the back end of a fully functional conversational agent, including its limitations through
the use of dialogue templates. One researcher simulated PairBuddy as the wizard in the pilot study.

3.3 Participants
Seven students majoring in computer science were recruited from our university. However, we
only report data from 6 participants (3 undergraduate and 3 graduate) as one participant did
not interact with PairBuddy during the study. Both undergraduate and graduate students were
selected for the study to account for the varying diversity of programming skill. Participants with
basic object-oriented programming experience were chosen on a first-come-first-serve basis. Upon
completion, participants were given $20 in Amazon gift cards. Table 2 shows the demographics of
our pilot study participants. These participants are referred to as PU# and PG# for undergraduate
and graduate students respectively. For example, PU4 is the fourth undergraduate participant of
the pilot study.

3.4 Study Design
Participants completed a background questionnaire prior to the pilot study. Before starting the
task, participants watched video tutorials on the concepts used in the study including the driver
and navigator pair programming roles, the think-aloud method, and test-driven development. The
think-aloud method encourages participants to vocalize their thoughts and feelings [113, 160].
Test-driven development is a type of extreme programming that prioritizes the creation of test
cases before implementing and refactoring code. Test-driven development evaluates participants’
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knowledge and enables diverse dialogue since each development stage provides a unique style of
thinking.
Participants were asked to use pair programming and test-driven development alongside Pair-

Buddy to complete an implementation of tic-tac-toe: a game where two players take turns marking
spaces in a 3x3 board. Code for the board, along with three related test cases, were provided to
the participants. Tic-tac-toe was selected for its simplicity, as anyone with basic programming
experience could understand and implement solutions to the requirements without prior knowledge
of the domain.
Participants were then instructed to create new test cases and functionality based on a given

list of user stories, acceptance criteria, and scenarios. Participants wrote Java code in the Eclipse
IDE [54] using JUnit [55] to implement testing. The duration of the task was fixed to 50 minutes
to prevent participants from fatigue and to ensure that the entire study session lasted under 90
minutes.

A semi-structured interview was conducted using a script, and individualized questions explored
study-specific events.

3.5 Data Analysis
The video, audio, and interviews from the pilot study were transcribed and analyzed qualitatively to
evaluate the usability of PairBuddy. We used grounded theory [74] to create a codeset of the types
of contributions PairBuddy made as is shown in Table 3. Transcripts were coded by two researchers.
Initially, both researchers independently coded the same 20% of the transcripts, and average inter-
rater reliability was measured at 86% using the Jaccard index. The remaining transcripts were split
and coded separately. Interview transcripts for the pilot study can be found [4].

3.6 Results
The first iteration of PairBuddy allowed us to examine the feasibility of a pair programming
conversational agent. The insights and avenues for improvement are as follows:

(1) Helping Programmers
PairBuddy helped participants complete the programming task as both a driver and a navigator.

Figure 3 details the contributions PairBuddy made in three separate ways: 1) PairBuddy offered

Table 3. Code set for PairBuddy’s contributions.

Contribution Type Description Example

Direction Guiding participants towards goals “Write a method... for a horizontal win.”
Domain - Help IDE, language, or domain knowledge “Looks like... an import error for JUnit.”
Method - Add Provide example code for methods “Is this code... useful?”
Method - Clarify Give knowledge about methods “Get the value... by accessing its coordinate.”
Test case - Add Provide example code for test cases “I can generate test cases.”
Test case - Clarify Give knowledge about test cases “To test... we will need to place marks.”
Bug - Identify Identify bugs or mistakes “Double check the vertical check.”
Bug - Fix Fix bugs or mistakes “Error is commonly caused by...”

Contribution Source Description

PairBuddy Alone PairBuddy offered contributions
Human Asked Participants prompted PairBuddy
Human Asked - Unanswered PairBuddy couldn’t help programmer
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help, 2) participants asked for help, and 3) participants asked, but PairBuddy could not provide
help. The contributions types include: direction, domain-related help, method/test clarification,
method/test addition, and bug identification/fixing.
When participants were lost, PairBuddy provided direction through its messages. For example,

when PU6 had difficulty writing a method, PairBuddy gave guidance, “We need to write a method
to check for a horizontal win.” Furthermore, PairBuddy provided help for questions about the IDE,
JUnit, language, and domain (tic-tac-toe). For example, when PG3 was having difficulties using the
testing suite (JUnit), PairBuddy provided help, “It looks like we may have an import error for JUnit.”

PairBuddy contributed knowledge by clarifying test cases and methods. For example, when PU4
was unsure about how to write a test case, PairBuddy responded, “To test for horizontal, we will
need to place marks at zero zero, one zero, and two zero.” Similarly, PairBuddy helped PU5 with her
method, “If a space is occupied by a ‘-’ then it is considered empty.”

PairBuddy provided sample code for test cases or methods in the text chat. For instance, PairBuddy
offered to contribute a test case for PG6, “I can generate test cases based on the user scenarios. Would
you like me to do this?”, and a method for PG1, “Does this code help you out any?”

Finally, PairBuddy provided guidance for finding and fixing bugs. When PG1 made a mistake in
the vertical win method, PairBuddy commented, “I think there is a syntax error on line 41.”
Periodically, PairBuddy failed to answer the questions asked by participants (red in Figure 3).

However, PairBuddy was designed to follow-up with separate contributions if possible (blue in
Figure 3). For example, when PU5 asked, “What would the arguments be for the method to find if
there is a winner?”, PairBuddy was not designed to answer this difficult type of question, so instead,
it made a suggestion from online, “Is this code example from online useful?”
(2) Effect of Programming Experience

Figure 3 shows the trend that graduate students (PG1 - PG3) interacted with PairBuddy during the
second half of the study, while undergraduate students (PU4 - PU6) interacted from the beginning.
One graduate student, PG1, interacted from the start, but PG2 and PG3’s first interactions were
at 19:00 minutes and 17:30 minutes respectively. In his interview, PG2 said that he wanted help
just-in-time and preferred to work solo on his tasks, “I was thinking, and I want to have time for...
quiet and focus.” We conjecture that experienced participants were less trusting initially, but their
trust increased overtime. For example, PG3 said, “As it went on, I was like, ‘Hey,... we have the same
idea for this.’ ”

Fig. 3. A timeline illustrating PairBuddy’s contributions during the pilot study. Contributions were either
offered by PairBuddy (blue) or asked by participants (yellow). In some instances, PairBuddy was unable to
provide help (red). Contributions types include direction, domain-related help, method/test case addition,
method/test case clarification, and bug identification/fixing.
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(3) User Experience
Participants enjoyed working with PairBuddy and appreciated its company. PG2 found Pair-

Buddy’s voice supportive, saying, “Just hearing him talk helped me stay on track and stay focused on
the task at hand and what needs to be done.” Similarly, PU5 indicated that she often thinks out-loud
with a partner in her classes, explaining, “I’ll like talk, ‘I don’t know what I’m doing,’ and [my friend]
will be like, ‘I don’t either.’ ” Additionally, PG3 felt synergy with PairBuddy, commenting, “I think
we work together well.”

Participants also enjoyed the motivational aspect of PairBuddy. In fact, all participants responded
positively to motivation. For example, when PG1 fixed a bug that he was struggling with, PairBuddy
celebrated saying, “Yay! You did it!”, and PG1 smiled responding, “Thanks!” Similarly, PU6 said,
“Thank you so much dude. Your motivation is so good. Thank you, thank you, your motivation is getting
me through.” However, participants’ reactions to positive feedback varied, as PG2 only said, “Okay
thanks.”

3.7 Lessons Learned
Feedback from the pilot study revealed many shortcomings of PairBuddy’s design and informed
modifications to the original design decisions for use in the main study. We found the following
limitations of both PairBuddy’s design and the study’s implementation:

Avatar Did Not Support Lip-Sync: Participants rarely looked at the avatar window throughout
the study. PU6 put it bluntly, “I forgot he [the avatar] was even there.” While the avatar often went
unused, PU4 noted that avatars play a specific role in communication for him, “I’m actually hard
of hearing just a little bit, but I take cues, at least for certain words, I take cues from reading lips,
so [lip-sync] would actually help me a lot.” Additionally, research finds that lip-synchronization
heightens the level of an avatar’s embodiment [75]. However, in the pilot study, PairBuddy did not
include a lip-sync feature, making communication less accessible and embodiment weaker.

Gender Toggle wasNot Utilized by Participants:All six participants never changed the gender
of the avatar, which limited our ability to make any explicit determinations for participants’ gender
preferences. Additionally, the style of interaction between genders was indiscernible due to the low
participant count, causing individual differences to out-shine gender-based differences. To gather
relevant gender data, we must use an approach that can discern individual gender preferences.

Participants’ Bias Toward Text: When given the option to use either voice or text to message
the agent, participants initially felt more comfortable using text and often forgot that voice was
even an option. In fact, 5/6 participants used text rather than voice. However, when PU6 was
accustomed to typing messages, he was taken off-guard when PairBuddy responded to his voice,
“Wait, can you hear me? That would be kinda cool if you can hear me.” Participants who used text
forgot PairBuddy could hear them, often verbalizing their message before typing it into the chat.
For example, PG1 spoke out loud, “How to write the method?” before sending it word-for-word
in the text chat. The inclination to vocalize questions suggests that the decision to use text over
voice was partially based on preconceptions and habits, rather than utility. While participants were
biased toward text, they spent an unnecessary amount of time typing messages. This notion of
slow text communication is supported by research on interaction speed [155], which finds that
typing is 3x slower than voice recognition (on mobile devices).

Participants Needed More Guidance: Although we envisioned PairBuddy to act as both a
driver and a navigator, design decision T2 transformed PairBuddy’s role as a driver into a code
recommendation system. Since PairBuddy couldn’t directly contribute to the code, its ability to
meaningfully guide progress was limited.
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Fig. 4. Creativity stages (blue) progress from Clarify to Implement, but humans skipped the Idea and
Develop stages (dashed arrows) when PairBuddy provided answers (code/test cases). Typically, human-
human pairs progress through each stage in succession (solid arrows).

Interjections Become InterruptionsWhile participants generally appreciated when PairBuddy
interjected with helpful dialogue, they did not like it when interjections became interruptions.
Even with PairBuddy’s timed feedback (design decision I2), participants wished PairBuddy did not
disrupt their train of thought. PG2 explained, “When I’m trying to think about a problem... Most of
the time I need a quiet place to think.” Similarly, PG1 complained, “Some of the things were distracting
to me and unexpected... That I didn’t like.” While research finds that interruptions greatly reduce
progress on writing assignments [64], our participants still wanted an agent that is engaging and
socially present. PG3 expressed his preferences, “I would prefer someone who is more engaged,” and
PU5 did too, “I don’t feel as crazy or lonely because it’s like ‘Oh, I’m talking to a computer. It’s fine,’
but like when you’re doing it alone it’s like, ‘Ah, there’s no one here.’ ”

Lack of Support for Creativity: Upon analyzing the transcripts, we realized that participants
followed creative strategies as identified in the Osborn-Parnes Creative Problem Solving Process.
Osborn-Parnes Creativity is frequently used to understand the creative process of an individual
[89, 99, 140, 142] and is vital to programmer success [57, 194, 212], especially when solving open-
ended problems [18, 28, 112, 117, 144, 198]. Particularly, it describes how programmers step through
a series of creativity stages. Figure 4 illustrates how programmers start at the Clarify stage of
creativity, where information, goals, and challenges are identified. In the subsequent Idea stage,
ideas regarding how to solve the challenge are generated. Then, in the Develop stage, solutions are
evaluated, strengthened, and selected for “best fit.” Finally, in the Implement stage, the resulting
solutions are written into code. In human-human pair programming, humans follow the creativity
stages in sequence [109] (solid arrows in Figure 4). However, we observed that participants skipped
the Idea and Develop stage by directly copying implementation from PairBuddy’s code examples
(dashed arrows in Figure 4). Therefore, PairBuddy should support each individual creativity stage,
specifically the skipped stages of Idea and Develop.

4 MAIN STUDY (ITERATION 2)
Through the insights gained from the pilot study and a more comprehensive research review, we
improved the design of PairBuddy and conducted a second “main” Wizard of Oz study.

4.1 PairBuddy Design (Iteration 2)
The design of PairBuddy for the main study intended to imitate human pair programming to the
highest degree that can be realistically achieved through the capabilities of current research. Table
4 lists the design decisions used in the main study. Those adapted from the pilot study remain
white, while new design decisions are highlighted in blue. Design decision modified or added for
the main study are as follows:
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Design: Creating the Interface and Interactions
(A) Interface – Embodiment via Avatar, Gender, Voice, and Text

For design decision F1, PairBuddy’s dynamic 3D avatarwasmodified to include lip-synchronization.
Furthermore, to explore the trade-offs of using text vs. voice for a pair programming agent, we
modified design decisions F3 and F4: communication with PairBuddy will be primarily verbal,
while reserving the text chat for resources such as images or links. This decision attempted to
model typical human-human remote communication.
(B) Interactions – Direct Driving, Timed Feedback, Adapted Skill, Typing Speed, and Redi-
rect Suggestions
To allow PairBuddy to more effectively guide code progress as an active driver, we modified

design decision I1: PairBuddy will make direct code contributions through the IDE rather than
sending code snippets through the text chat, and as an active navigator, PairBuddy will provide
more specific feedback. To support PairBuddy’s heightened engagement, we conducted a research
review of automated code and feedback generation algorithms. Since algorithms are prone to
mistakes, PairBuddy did not overwrite large chunks of participants’ code, and instead, commented
them out.
Since PairBuddy directly contributed code through the IDE, it was necessary to consider the

speed at which PairBuddy typed. Intentionally limiting an agent’s typing speed might be unap-
pealing and cause programmers to become impatient, but pasting large chunks of code might be
too overwhelming to comprehend. Therefore, we formulated design decision I4: PairBuddy will
incrementally paste small snippets of code to prevent programmers from becoming impatient or
overwhelmed. This design decision was informed from our best reasoning rather than previous
research.

In pair programming, the role of the navigator includes providing feedback and suggestions to the
driver. Sometimes, the navigator performs “backseat driving” where they instruct the driver directly
[94]. However, current technology does not fully support the implementation of arbitrary ideas in
this way, so in the pilot study, PairBuddy was designed to immediately admit its limitations saying,
“I’m sorry, I don’t know how to help with this.” Unfortunately, this design decision often marked an
abrupt end to the conversation. Therefore, to encourage higher engagement, we formulated design
decision I5: PairBuddy will redirect suggestions back to the programmer through dialogue such as
“How would that look like?”, “Do you want to try?”, or “Can you do that for me?”. If the programmer
insists, however, only then will PairBuddy admit its limitations.

Programmer: Integrating Technical and Soft Skills
(A) Soft Skills – Leadership, Uncertainty, Social Presence

Research finds that a democratic leadership style is most effective for pair programming [108]. A
way for PairBuddy to integrate democratic leadership is to practice effective pronoun use. Research
has shown that leaders use collective pronouns (e.g., “we” and “us”) to gain influence in a group
[96], but use personal pronouns (e.g., “I” and “me”) to “own up” to mistakes [148]. Therefore, we
formulated design decision S3: PairBuddy will display leadership by attributing successes to the
group while taking ownership for its mistakes. For example, when a test case fails, PairBuddy will
take ownership, saying, “I think I made a mistake,” but if all the test cases pass, PairBuddy might
say, “Great, we did it!”

Research suggests that conversational agents should preemptively use uncertainty to avoid cases
where agents make large miscommunications [14, 17], and the resulting conversational breakdowns
decrease users’ satisfaction, trust, and willingness to continue talking to conversational agents
[90, 91, 120]. Additionally, research on pair programming shows that people often ask for verification
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Table 4. Design decisions of PairBuddy’s main study implementation. Decisions modified from the pilot
study remain white, while new additions are highlighted in blue.

ID Design Decision Description Example Sources
Interface

F1 Avatar Embodied by a 3D lip-synced avatar [19, 21, 32, 119, 179, 209]
F2 Gender Gender can be toggled [26, 38, 184]
F3 Voice Communicate via voice synthesis [21, 31, 187]
F4 Text Chat Paste images or links
Interactions

I1 Direct Driving Edit code via IDE
I2 Timed Feedback Feedback at appropriate time [24, 104, 107, 114, 159]
I3 Adapted Skill Balance contributions with partner [14, 43, 59, 186, 193]
I4 Typing Speed Paste small sections of code
I5 Redirect Suggestions Participants implement their suggestions
Soft Skills

S1 Greeting Introduce itself [97]
S2 Motivation Encourage, recognize, comfort, commend [13, 34, 49, 63]
S3 I vs. We Share success and personalize mistakes [96, 148]
S4 Uncertain/Verification Show uncertainty via verification of work [17, 108]
S5 Social Presence Actively listen rather than interrupt [41, 64, 84, 134]
Technical Skills

T1 Write/Feedback Tests Generate test cases & feedback [12, 58, 126, 127, 131, 147]
T2 Write/Feedback Code Generate code & feedback [46, 100, 101, 136, 145, 213]
T3 Guidance Provide direction via user stories
T4 Creativity Support Prompt divergent & convergent thinking [92, 93]
T5 Feature Location Locate code from a description [115, 121, 158]
T6 Unnecessary Code Suggest deleting unused code [178]
T7 Missing Code Determine where more code is needed [73]

after each creative stage of development [108]. Therefore, we formulated design guideline S4:
PairBuddy will convey uncertainty by asking for verification in order to prevent conversational
breakdown. To potentially support this, the uncertainty of the PairBuddy’s dialogue could be based
on the confidence of the machine learning algorithms used to generate code and feedback.
PairBuddy’s timed feedback from the pilot study did not eliminate interruptions, since many

participants still voiced complaints. When participants were deep in thought, they wished that
PairBuddy listened rather than interrupted. However, maintaining an active presence as a navigator
is key to preserving the balance between roles. To this end, we utilize active listening – a technique
to allow a speaker an outlet for self expression [153] – to maintain social presence in a conversation.
For conversational agents, social presence is the feeling and perception of interacting with a human
being [138], and has been shown to increase the use of conversational agents [134], and can even
increase perceived usefulness, trust, and enjoyment [84]. Therefore, we formulated design decision
S5: PairBuddy will increase its social presence using active listening through acknowledgements
and confirmation questions. In this way, PairBuddy can encourage participants to think their ideas
out-loud rather than interrupting their thought process through dialogues such as, “What are you
thinking?” and “What does this code do?”.
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(B) Technical Skills: Guidance, Creativity Support, Feature Location, Unnecessary Code,
and Missing Code
To encourage programmers to interact more with PairBuddy (relative to our pilot study), we

conducted a thorough research review to identify the potential capabilities of automated code and
feedback algorithms, as well as techniques to support creative problem solving.

PairBuddy’s power to provide context-specific code and feedback was dependent on the capabili-
ties demonstrated by research. Automated code and feedback techniques [46, 213] show the ability
to provide feedback on code using a dataset of past programming solutions. However, this research
is either limited by the specificity of the feedback [46] or has only been demonstrated in a simple
programming language (iSnap) [213]. To increase the specificity of PairBuddy’s contributions, we
modified design decision T2: PairBuddy will have the limited ability to contribute context-specific
code (as the driver) and provide meaningful feedback (as the navigator) based on a dataset of past
solutions. For example, if PairBuddy detects that a participant’s code is semantically similar yet
deviates from a known solution, it might suggest, “There might be a mistake on line 66.” However, if
the participant writes code that deviates from all past solutions within the database, PairBuddy
will be unable to provide guidance.

Since PairBuddy attempts to replace a human partner, it will be designed to integrate the creative
problem solving stages used by humans. However, in the pilot study, PairBuddy only supported the
Clarify stage (via direction from user stories) and the Implement stage (via example implementa-
tion from online). Therefore, we formulated design decision B4: PairBuddy will add support for
the remaining Idea and Develop stages by using concepts from Idea Garden [92, 93]. Idea Garden
suggests the use of probing questions to promote a programmers’ use of diverse problem-solving
strategies. We integrated two strategies into PairBuddy’s script: working backwards from the goal
and encouraging divergent thinking before convergent thinking. For example, PairBuddy might ask,
“What are all the possible ways we could do this?”, “Why do you think so?”, or “What data structure
could we use?”. As a navigator, PairBuddy can prompt the participant to move from the Idea to the
Develop stage by asking, “What would that [idea] look like?” As a driver, PairBuddy will provide
the empty structure of the code to help programmers conceptualize the solution. Additionally,
PairBuddy can discuss the general structure of the code saying, “I think we should use a for loop/if
statement here,” or “Should we use a while loop or a for loop?”
Both static [121] and dynamic [115] techniques exist to automatically search source code for

specific features or descriptions. For the Java programming language, Flat3 [158] is an Eclipse
plugin that searches source code based on arbitrary descriptions (e.g., “file saving”). Based on
feature location algorithms, we formulated design decision T5: PairBuddy can identify locations
within the code that match a description. For example, if the participant asks, “Do we return false in
the tie game detection function?”, PairBuddy can identify the isTied() function as the context to the
question.

Many programming IDEs include refactoring tools that automatically detect uncalled functions
or unused variables. For the Java programming language, UCDetector [178] is an Eclipse plugin that
can identify unused variables, functions, and classes. Based on this functionality, we formulated
design decision T6: As a navigator, PairBuddy can detect unnecessary blocks of code and suggest
that the programmer consider deleting or modifying them. For example, PairBuddy might suggest,
“I believe we have unnecessary code in the tie test function.”

Research on automated feedback has shown the ability to automatically determine the locations
where code is missing based on pre-defined functions in Haskell [73]. Since Haskell is a functional
programming language, this research does not necessarily apply to an imperative language like
Java. Regardless, the supporting research of previous design decisions [12, 46, 127, 131, 213] would
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Fig. 5. The main study’s interface including the Eclipse IDE and the man/woman avatar. Note, each participant
only saw one avatar at a time.

be potentially capable of identifying missing code, so we formulated design decision T7: As a
navigator, PairBuddy will direct the driver’s attention to locations where more code is needed.

4.2 Wizard/PairBuddy Implementation
The wizard’s interface and implementation integrated PairBuddy’s new design decisions as dis-
cussed in Section 4.1. The interface design of PairBuddy included the following changes from the
pilot study:
The Saros plugin for the Eclipse IDE was used for remote collaboration rather than to simply

view the participant’s code. Skype [173], Discord [170], and Google Hangouts [172] facilitated audio
and video communication with the participant. To support the integration of lip-synchronization
for PairBuddy’s avatar (based on the lessons learned from the pilot study), we utilized the Facerig
[176] avatar embodiment software. From the limited selection of Facerig avatars, we chose two
avatars (man and woman) based on their professional appearance. Figure 5 shows the interface
that participants used for the main study.

The wizard’s script for the second iteration of PairBuddy was enhanced to include the new design
decisions discussed in Section 4.1. Two researchers acted as the wizard to simulate the behavior of
PairBuddy. The first researcher focused on verbal and non-verbal communication, while the second
researcher focused on gathering and providing code for use as the driver. The decision to have two
wizards was informed from the pilot study, since our single researcher had difficulty balancing all
of their responsibilities as PairBuddy.
To quicken the wizard’s response speed, a custom Electron [175] application was created to

provide the researcher a simple user interface to select dialogue templates, provide context-specific
information, and generate audio via Google Text-to-Speech [80]. The generated voice was sent
to Voicemeter [177] and subsequently Facerig to perform lip-synchronization, and the resulting
avatar and voice streams were sent to participants via communications tools (i.e., Skype, Discord,
Google Hangouts).

4.3 Participants
Due to the COVID-19 pandemic, study sessions were conducted remotely, and recruitment of
participants was done via snowball sampling, social media (Facebook [171], Twitter[174]), and
hiring sites (Upwork [67]). Our recruitment approach helped collect participants from universities
and industries across the country, in addition to local participants. We recruited 14 participants on
a first-come first-serve basis, including 8 students (4 men / 4 women) and 6 professionals (3 men /
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Table 5. Demographics of the main study participants.

P# Age Gender Education Programming Experience
MS1 19-23 Woman Undergrad 3 years
MS2 19-23 Man Undergrad 2 years
MS3 19-23 Man Undergrad 2 years
MS4 19-23 Woman Undergrad 2 years
MS5 19-23 Woman Undergrad 3 years
MS6 19-23 Man Undergrad 3 years
MS7 19-23 Woman Undergrad 2 years
MS8 19-23 Man Undergrad 4+ years
MP9 30-40 Woman Masters 4+ years
MP10 41+ Man Masters 4+ years
MP11 19-23 Man Undergrad 3 years
MP12 30-40 Woman Masters 3+ years
MP13 30-40 Man Masters 2 years
MP14 19-23 Woman Undergrad 1 year

3 women). We purposefully achieved a gender balance since research has shown a difference in
preference and behavior across various genders [30, 36, 71, 125, 129, 162]. Note, all participants
self-identified as men and women in their background questionnaires, so we report results from
these two genders. We refer to participants of the main study as either MS# or MP# for students
and professionals respectively. For example, MS4 is the fourth student participant of the main study.
Student participants were given $20 and professionals were given $40 in Amazon gift cards.

4.4 Study Design
The study design remained the same as the pilot study except for the following changes:

As previously mentioned, the main study was conducted during the COVID-19 pandemic, so all
study sessions were conducted virtually. Prior to this 40 minute study, participants completed a self-
efficacy questionnaire. The main study included a tutorial that explained PairBuddy’s abilities and
encouraged participants to use PairBuddy while completing their task. This introduction attempted
to combat the low level of initial (and total) interactions with PairBuddy in the pilot study, and
aimed to ensure that all participants started with the same preconceptions of PairBuddy’s abilities
[14]. Additionally, a pre-study questionnaire was used to establish a baseline for participants’
self-efficacies using a 7 point Likert scale [95] for a maximum score of 63 points.
The study was designed to ensure that each participant interacted with both of PairBuddy’s

gender embodiments. Rather than evaluating gender preferences directly, we used a within-study
design where the avatar’s gender was changed halfway through the study to compare preferences
on an individual basis. The initialization of PairBuddy’s gender was evenly distributed with the
genders of the participants.
The study was followed by another self-efficacy questionnaire, a pair programming preference

questionnaire, and interview questions to triangulate our study findings. The same interview
questions used in the pilot study were integrated with additional questions related to the usability
of the features that were more difficult to evaluate using our think-aloud study.
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4.5 Data Analysis
The resulting transcripts were analyzed using the codeset identified in the pilot study (Table 3).
Three researchers independently coded 20% of the transcripts and reached an agreement on 93% of
the coded data by calculating inter-rater reliability using the Jaccard index. The wizard’s script,
study transcripts, and interview transcripts can be found [4].

4.6 Limitations
One limitation of the main study is its small sample size of 14 programmers. Although our sample
was gender-balanced and included a wide range of skill levels (8 students and 6 professionals),
the study’s small size did not allow us any room for further stratification. On the other hand, our
study helped evaluate PairBuddy’s usability with a diverse population of programmers. While we
only studied one programming language (Java) and one IDE (Eclipse), our focused approach was
an appropriate choice to show baseline feasibility. Studies with more diverse programmers and
languages will need to be conducted in the future.
Programmers’ experience with the Java language, test-driven development, and pair program-

ming may have affected their experience with PairBuddy. For example, PairBuddy provided very
few contributions for our most experienced professional, MP10, while providing more contributions
to other less-experienced professionals. In the future, more variables should be considered in our
analysis.
Furthermore, our results are based on the simple task of tic-tac-toe, but the game’s simplicity

may have affected our usability results since one participant mentioned that he might not trust
PairBuddy for more complex tasks. While the variation of task complexity needs to be further
explored with additional studies, nonetheless, we believe that our task was a good representation
of student assignments and that our results confirm the feasibility of PairBuddy in educational
settings.

We studied the usability of PairBuddy in a virtual lab setting for only 40minute sessions. Although
this was good starting point, our study could not provide a long-term perspective regarding the
usability and user experience of programmers at this moment. For instance, will interactions with
PairBuddy for longer periods of time increase or decrease trust?
Finally, we were forced to conduct a virtual lab study due to COVID-19, which may not mimic

traditional lab studies where participants sit in a controlled lab environment. However, we view
this as an opportunity to evaluate the usability of PairBuddy in a hybrid lab study consisting of
both real-world and controlled lab settings.

4.7 Results
The second iteration of PairBuddy served as a realistic portrayal of a pair programming conversa-
tional agent. Insights collected are as follows:

(1) Helping Programmers
The results from Figure 6 show that participants were most likely to request help from PairBuddy

(yellow) during the second half of sessions. We conjecture that the change in requests overtime is
the result of participants’ initial distrust in PairBuddy, as noted by MS5’s comment, “I think I was a
little distrustful at first half of the application, but then after working with it, especially after I saw
that it was helping me solve the problem... I trusted it a little more.”
Participants’ confidence in their coding abilities increased with the usage of PairBuddy. On

average, participants’ self-efficacy scores increased +3.64 from a total of 63 points (49.71 to 53.07)
after their interactions with PairBuddy (Table 6). Only 3/14 participants reported a decrease in
self-efficacy. MS6 was by far the largest outlier, with a difference in self efficacy of -18 points: 13
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Table 6. Self-efficacy scores for main study participants from pre- and post-study questionnaires. Responses
to nine questions were scored on a seven point Likert scale for a maximum score of 63 points.

P# Pre-Study Post-Study Difference
MS1 50 56 +6
MS2 57 61 +4
MS3 50 45 -5
MS4 52 58 +6
MS5 41 56 +15
MS6 46 28 -18
MS7 43 55 +12
MS8 55 51 -4
MP9 48 58 +10
MP10 51 54 +3
MP11 60 61 +1
MP12 44 53 +9
MP13 50 50 0
MP14 49 57 +12

Average 49.71 53.07 +3.64

points fewer than any other participant. Otherwise, 10/14 participants saw an increase in their
self-efficacy.

Getting Directions andDomain-Related Help: Participants received direction from PairBuddy
as seen in Figure 6. PairBuddy’s guidance helped start participants in the right direction, as PS5
explained, “It definitely helped me get started.” Participants received guidance for an unfamiliar
language, including MP11 who said, “Getting started was the hardest part for me, like trying to wrap
my head around Java again.” Some learned new techniques, like PS2 who commented, “How to do
test-driven development... the robot helped me make sure that I was writing it correctly, and I liked
that.”

Clarify a Method or Test Case: Participants mentioned that PairBuddy helped clarify task
objectives, including MP9 who commented, “I felt like PairBuddy was pretty good at understanding
the overall objective of the of the project.” This positive feedback was largely caused by PairBuddy’s
ability to Clarify the task based on user stories or generated solutions. For example, PairBuddy
provided insight when MS6 was trying to finish a method, “I think we are missing code in this
function.” However, PairBuddy often couldn’t answer Idea-related questions, so when MP14 asked,
“Dowe need to account for the opposing playermark?”, PairBuddy reflected the question by responding,
“ What do you think?” While such responses continued the conversation, they did not provide the
direct, human-like answers that participants desired.

Adding Methods or Test Cases: As the driver, PairBuddy wrote both test cases and method
functionality. PairBuddy’s contributions helped participants make progress, and almost all par-
ticipants ended up reusing the code given by PairBuddy. This includes MP11, who successfully
adapted PairBuddy’s test case for a vertical win into both horizontal- and diagonal-win test cases.
For some participants, PairBuddy’s code offered a new approach. For instance, when MS1 struggled,
PairBuddy’s alternative suggestion provided the insight necessary for MS1 to complete her vertical
win functionality.
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Fig. 6. A timeline illustrating the contributions PairBuddy made in the main study. Contributions were
either offered by PairBuddy (blue) or asked by participants (yellow). In some instances, PairBuddy was
unable to provide help (red). Contributions include direction, domain-related help, method/test case addition,
method/test case clarification, and bug identification/fixing.

Identifying or Fixing Bugs: As both the driver and navigator, PairBuddy helped participants
find and fix bugs, leading to an increase in code quality. As the navigator, PairBuddy would often
point to locations of errors or provide hints. For MS1, PairBuddy pointed, “I think there is a typo on
line 107,” leading her to immediately fix the mistake. On some occasions, PairBuddy had to fix bugs
itself when participants struggled to understand the error that PairBuddy was referring to. When
MP13 had trouble fixing an identified mistake, PairBuddy took action by asking for permission to
drive and fixing the error while completing the remainder of the method.

When PairBuddy Failed to Answer: Figure 6 shows the instances where PairBuddy was unable
to help participants (red). Either PairBuddy would redirect queries (e.g., “What do you think?” ) or
admit its limitations (e.g., “Sorry, I’m not good at logic” ). PairBuddy’s inability to provide help like a
human negatively affected some participants’ trust and confidence in PairBuddy’s abilities. After
his queries went unanswered three times, MS2 mentioned PairBuddy’s inaction as a negative aspect
in his interviews, “He couldn’t respond to that. At least not in a way that made sense.” Participants
expressed concerns about PairBuddy’s inability to answer “why” questions or give reasoning behind
the code it write. After PairBuddy failed to help, MP9 later commented in her interviews, “I felt like
they [PairBuddy] knew what to do. But they weren’t always able to communicate to me the why.”

(2) Usability of PairBuddy
In their interviews, participants expressed mostly positive experiences with PairBuddy (Table 7):
Enjoyed/Helped/Learned:
Enjoyed: A vast majority (12/14) of participants enjoyed working with PairBuddy. MP10 was the

most enthusiastic commenting, “It is really, really awesome.” PairBuddy’s design surprised many
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participants, including MS5 who said, “I thought it’s really cool technology. I didn’t know stuff like
that was out there, really. So it’s pretty novel.” The only participant who disliked PairBuddy was
MS6, who mentioned, “Not particularly...There wasn’t as much human interaction.”
Helped: Most participants (13/14) expressed that PairBuddy helped them solve the task. MS8

thought PairBuddy saved him time saying, “It did, yea. It saved me some time because a lot of that
time would have been spent doing trial and error.” Even MS6, who disliked PairBuddy, indicated
that it helped him solve the problem, “[PairBuddy] helped me understand... how to start approaching
things so that I could start going myself.”

Learned: However, only 6/14 participants said that they learned from PairBuddy, and 3/14
remained neutral. Some participants mentioned that they learned task-related concepts, including
MS6 who commented, “I think learning the general structure of what pair programming is,” while
others learned new creative strategies including MS3 who said, “I got it like a new perspective... I
guess I still need to start thinking more outside the box.” On the other hand, 5/14 responded they
did not learn from PairBuddy. Unlike a human, PairBuddy didn’t explain the code it wrote, as MS3
described that PairBuddy “left it up to [their] interpretation.” PairBuddy’s inability to express its
reasoning may have contributed to lower satisfaction with PairBuddy.

Future Design: To improve PairBuddy’s design going forward, we will explore more ways to
impart knowledge through code and test case generation to the extent that current research allows
(details in Section 5).

Trusted: Most (12/14) participants trusted PairBuddy overall (Table 7). Participant’s trust may
have been based on the assumption that, “[PairBuddy] was familiar with what the program should
look like,” as described by MS7.

Navigator and Driver Roles: PairBuddy was trusted as a navigator (12/14) more than as a driver
(8/14).

PairBuddy acted as an active navigator, using soft skills (leadership, motivation, uncertainty, and
social presence) to help increase participants’ confidence and trust. 12/14 participants indicated trust
and confidence, as confirmed by MS2’s comment, “I thought it [navigation] was it’s [PairBuddy’s]
most useful function.” Similarly, MS6 mentioned, “One thing that was helpful is that when they made
their navigator suggestions, like all of them seemed reasonable.” The motivation PairBuddy provided
was praised by participants like MS7 who explained that, “It was cute that it said, ‘Good job,’ and gave
positive affirmations.” PairBuddy’s social presence provided a sense of security toward participants’
work, as evidenced by MS2’s comment, “I think that I can keep on coding and not like, worry about
checking it three more times because PairBuddy’s got my back.” MP9 treated PairBuddy as someone
to talk to, commenting, “I could say things in the same way that I would to a human.”
PairBuddy acted as an active driver, using technical skills to make contributions, give just-in-

time feedback, and support divergent thinking. Participants appreciated PairBuddy’s divergent
thinking including MS5 who commented, “I’m gonna approach coding in the future... [by] stepping
back and looking for alternate approaches.” Although participants trusted PairBuddy’s code and
just-in-time feedback, they wanted even more assistance. This desire was evidenced by MS3’s
suggestion, “Maybe have it give more frequent and more pointed advice on the code itself.” MS7 wished
PairBuddy’s feedback was more in-line with their own ideas, “I think my trust would decrease if I
noticed that the suggestions it was giving me weren’t like really aligned with what I was trying to do.”

Preference for PairBuddy vs. Human: Participants had mixed opinions when asked to compare
PairBuddy with a human. Some participants preferred PairBuddy’s collaboration style including
MS5 who commented, “I think I was getting feedback from it akin to what I would from humans,
and in fact, [it] is a little less intrusive than some humans are when it comes to how I’m writing my
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code.” However, many participants wished to work with humans to discuss ideas, since PairBuddy
couldn’t explain its own. In fact, participants ignored PairBuddy’s suggestions a total of 16 times
and often chose to pursue their own ideas. MS3 wished PairBuddy provided explanations as a
driver, and described that, “The code that it [PairBuddy] wrote was functional for what it did, but it
[PairBuddy] never actually explained what it drove.” Participants also expected PairBuddy to offer
more contextual feedback, as MS6 mentioned, “If I were to ask a human, they wouldn’t just say ‘I
may have made a mistake,’ they would explain what they did and explain why they were thinking
they made a mistake or why they thought it wasn’t a mistake.”

Future Design: Going forward, we will improve PairBuddy’s ability to generate explanations
and contribute to discussions as much as current technology will allow (details in Section 5).

Embodiment: The embodiment of PairBuddy’s voice was much appreciated, while the presence
of PairBuddy’s avatar received mixed feelings. Feedback on the presence of the text chat leaned
negative (see Figure 7).

Avatar: Most participants preferred (6/14) or were neutral (6/14) towards the presence of an avatar.
Some participants found it natural to interface with an avatar, as described by MS7, “It feels more
natural to talk to it than if there’s no avatar.” Similarly, MS4 felt a closer connection to PairBuddy
when personified, saying, “[I felt connected] more so than if it was just a voice... or just text.” On the
other hand, 2/14 participants did not like the avatar. These differing opinions coincide with mixed
empirical evidence for the necessity of avatars for agent embodiment [50, 83, 87, 133, 185, 208].

Voice: Voicewas PairBuddy’smost desired feature (13/14 preferred, 0/14 not preferred). The ability
to communicate with PairBuddy verbally was very intuitive for participants. MP14 particularly
enjoyed being able to think out loud, commenting, “I liked being able to speak... [so that PairBuddy
can] understand what I’m saying while I’m talking out loud rather than having to type out everything.”
MS2 found PairBuddy’s voice to be less distracting when he was deep in thought saying, “I feel like
the voice is better when you’re focused on programming.”

Text: The desire for text messages wasmixed (2/14 preferred, 7/14 not preferred). Participants who
advocated for text suggested it as an addition, rather than a replacement, of voice communication.
MS5 suggested to display PairBuddy’s messages as text bubbles, explaining, “I also could also see like
a little pop up in the corner maybe being helpful.” However, most participants thought text would be
distracting, as MP9 described, “I wouldn’t want to be context switching between the programming
and the messages.” These results contradict preferences for text chat in the pilot study, and may be
influenced by the lack of text messages in the main study.

Gender: Participants’ gender preferences were identified by asking whether they preferred
the first or second avatar/voice. Many participants’ reasoning for their choice was not gender-
related; MP13’s reason was “just because I started with it,” while MS4’s was because “she sounded
a little less robotic.” While previous research has identified gender preferences and bias toward
conversational agents [26, 38, 184], no useful patterns emerged from our data that evidenced any
effect of PairBuddy’s gender.

Future Design: We will keep the same embodiment design with additional choices for Pair-
Buddy’s gender, ethnicity, and accompanying voice tones.

Tone/Style/Feedback: Participants preferred a casual tone, had mixed opinions of PairBuddy’s
dialogue style, and desired non-neutral feedback (Table 7).

Polite and casual tone: Most participants preferred if PairBuddy used a casual (8/14) over a
polite tone (2/14). Since PairBuddy’s tone leaned more casual, all participants were satisfied with
PairBuddy’s tone (14/14). Even participants who preferred polite dialogue liked PairBuddy’s tone
the way it was. In his interview, MP10 commented, “I felt it was excellent. It didn’t feel to be like trying
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Table 7. Responses to interview questions in the main study.

Interview Question Yes Neutral No
Did you enjoy working with PairBuddy? 12 1 1
Did PairBuddy help you solve the problem? 13 0 1
Did you learn anything from PairBuddy? 6 3 5
Did you trust PairBuddy? 12 2 0
Did you trust PairBuddy’s navigation? 12 1 1
Did you trust PairBuddy’s navigation over a human? 5 6 3
Did you trust PairBuddy’s driving? 8 5 1
Did you trust PairBuddy’s driving over a human? 4 4 6
Was PairBuddy’s avatar helpful? 6 6 2
Was PairBuddy’s voice helpful? 13 1 0
Would more text have been helpful? 2 5 7
Do you prefer a casual over a polite agent? 8 4 2
Was PairBuddy too casual (yes) or too polite (no)? 0 14 0
Do you prefer human-like dialogue over robotic? 5 6 3
Do you prefer positive over neutral feedback? 12 2 0
Do you like negative feedback? 6 7 1

to be polite. It didn’t feel to be rude as well.” Similarly, MP14 thought PairBuddy’s tone achieved a
good balance, saying, “And the tone was like, not very formal, which I liked, but I wouldn’t want it
more casual than it is now.”

Human vs. robotic style: Participants had mixed opinions on whether PairBuddy should be
human-like or robotic. 5/14 participants favored human-like dialogue, while 3/14 wished Pair-
Buddy’s dialogue was more robotic. MS3 idealized a more human PairBuddy, explaining, “Ultimately,
I think having it speak as human-like as possible is the goal.” MP10 described that he enjoyed the
social aspect of PairBuddy’s human-like dialogue, “I enjoy... my buddies and working with them...
Closer to that, I think more people would like [PairBuddy] because that is how they work in real world.”
Participants who preferred robotic dialogue mentioned that it would be strange or disturbing
if PairBuddy was more human-like, including MS1, who commented, “It would be weirder if it
[PairBuddy] was more like a human; You kind of expect some level of not human dialogue.” Similarly,
MS5 explained her feelings toward PairBuddy’s style, “I think there’s something a little creepy about
something that’s like really close to being human, but not quite.”

Positive/Neutral/Negative Feedback: All participants preferred (12/14) or were neutral (2/14)
toward PairBuddy’s positive feedback. MS4 voiced her opinion, saying, “It [PairBuddy] wasn’t rude
about it. He was very like, ‘I don’t know if that’s gonna work,’ rather than like, ‘Wow, why’d you do
that?’ I think it made it... a little more trustworthy.” MP10 emphasized the need for exclusively positive
feedback, “The way [humans] think and the way they solve problems requires a lot of motivation and
requires a lot of positive praise, even if they are doing things wrong.”

Participants interpreted negative feedback as identifying mistakes in the code, so most of them
liked (6/14) or were neutral (7/14) towards such responses. This misunderstanding was evidenced
by MS8’s comment, “If there are negative parts to what I’m doing, I’d like to know.”
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Future Design: We will provide personalization for PairBuddy’s script across tone, style, and
feedback (details in Section 5). To avoid the “uncanny valley” effect where realism becomes unset-
tling [70], PairBuddy’s movement and stylization will be further considered. Finally, PairBuddy
will continue to give encouragement while still providing informative feedback.

(3) Pair Jelling with PairBuddy as a Programming Partner
Participants’ interactions with PairBuddy were fewer in the first half of sessions, but increased

by the second half. Infrequent interactions may have been caused by participants’ unfamiliarity
with PairBuddy as evidenced by MS7’s interview, “It was a little bit awkward initially to figure out
what things I could say that it would actually respond to... But I figured that out pretty quickly once
we started working more.” Adjusting to PairBuddy in this way is similar to the pair “jelling” period
of human-human pair programming, where programmers take time to get accustomed to each
other’s personality, style, and abilities [94]. However, the jelling period with PairBuddy often ended
when participants understood its utility as MS5 explained, “Seeing consistent results in regards to...
positively affecting my performance would increase my trust in it [PairBuddy].” Research corroborates
this claim, as potential productivity has shown to be a significant motivator for the utilization of
conversation agents [27].

(4) Unrealistic Assumptions Regarding PairBuddy’s Capabilities
Our participants assumed that PairBuddy would know all the answers as described by PS1, “I

assumed it [PairBuddy] knew the answer.” Similarly, PS11 commented, “I went in assuming that...
you guys had already tested it quite a bit, and so the robot was really familiar with what the program
should look like.” This assumption of PairBuddy’s knowledge is untrue since design decisions T1 and
T2 provide PairBuddy with only limited abilities since automatic code and test case generation are
topics of ongoing research. In the future, the inaccurate expectations of PairBuddy’s abilities can be
addressed through further clarifications of PairBuddy’s limitations in its script, “Sorry, I have limited
capabilities. Researchers are working to make me smart enough to answer all your questions. Follow
the link I sent in the text chat to read the current research on automated code and test case generation.”
However, PS3 understood PairBuddy’s limitations, especially for more complicated tasks that
require more discussions, “I guess it depends on the complexity and the nuance of the situation and
the [user] stories that I need to take care of, so for simpler problems or more straightforward tasks,
I’d say that prefer PairBuddy. But for more complex scenarios, I would rather have a human that can
provide more... pointed and specific feedback and advice.”

(5) Helpful as a Non-Judgemental Partner and When Working Solo
PairBuddy helped participants by acting as a non-judgemental partner. PS5 explained, “I think

the big thing is sometimes as a programmer, it’s embarrassing when you make mistakes, so you’re
stuck on something around your colleagues, but PairBuddy I don’t think judges me.” PS2 described the
lack of pressure to perform, “I feel like whenever I program alone, there’s less pressure to like write
something that’s correct the first time... So I feel like in the end, it [PairBuddy] helped me write better
code.”

5 DISCUSSIONS AND FUTUREWORK
Our results indicate that PairBuddy was an effective pair programming partner and was enjoyed
by our study participants. For the future, the design space as well as the associated challenges are
as follows:
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(1) Supporting Method-level Code and Test Case Generation
Designing a conversational agent for the programming domain is challenging. Unlike other

conversational agents, PairBuddy must uniquely support all stages of software development (i.e.,
clarifying requirements, discussing ideas, designing solutions, and implementing code). Support
for each phase requires different knowledge and a different approach.
Moving forward, we need to research automated test case, code, and explainable feedback

generation for PairBuddy. Currently, the language models such as GPT-3 [29] can be trained from
Github [29, 77–79] to generate code, while automated test cases can be generated by tools such
as Randoop [141] and EvoSuite [65, 66, 154]. However, these tools must be adapted in order for
PairBuddy to explain the decisions made and give appropriate feedback. To directly answer the
“why” questions that programmers ask, Ko et al. [105, 106] created the automated tool Whyline for
both Alice [42] and Java, but similar research must be conducted in other programming languages
and domains to allow agents to more directly support the refactoring stage of software development.
Furthermore, dialogues are often multimodal and involve both verbal and nonverbal inputs

[23, 48, 52, 210]. Therefore, in the future, each dialogue template of PairBuddy’s script will be
accompanied by non-verbal meta-data (e.g., avatar facial expressions, UI events) to facilitate multi-
modal communication.

(2) Supporting Diverse Problem Solving Strategies
Additional problem-solving strategies must be integrated into PairBuddy to fully support all

stages of the creative problem solving process. Problem-solving strategies such as backwards,
divide and conquer, analogy, generalization, and “sleep on it” [112, 144, 198] enable programmers
to make progress on their tasks. Previous research from Idea Garden [92, 93] shows that these
problem-solving strategies can be implemented by presenting suggestions via language-independent
templates, which are informed by language-dependent information about user tasks and progress.
Based on Idea Garden, we integrated a backward problem-solving strategy in PairBuddy’s script
to support divergent thinking, but the future design will integrate additional problem-solving
strategies inspired by Idea Garden.

(3) Supporting Learning Preferences: Solo or Collaboration
Research has shown that collaborative learning is more effective than traditional methods (such

as lectures) since collaboration allows students to build their own mental models based on the
discussion and knowledge transfer that occurs during the problem-solving process [11]. But still,
many of our participants preferred to work solo. In the pilot study, some participants only used
PairBuddy as a resource for code examples, while in the main study, a few preferred that PairBuddy
only observe and identify errors. Still, others may prefer full collaboration to enjoy the benefits of
pair programming. To support the diversity of learning preferences (solo vs. collaborative) among
programmers, we will provide different options for PairBuddy’s behavior including “Navigator
Only,” “Driver Only,” or “Full Pair Programmer” modes.

(4) Implementing PairBuddy as a Task-Oriented vs. Non-Task-Oriented Agent
PairBuddy’s design needs to fall between the two common types of conversational agents: task-

oriented and non-task-oriented. Task-oriented agents perform a variety of tasks and services for
users (e.g., Amazon’s Alexa [188]) and provide concise, direct answers to user queries based on
knowledge sources (e.g., Bing QA [196]). Non-task-oriented agents facilitate natural interaction
between humans and electronic devices (e.g., Meena [8]). For pair programming, a task-oriented
agent can assist user queries, while a non-task-oriented agent can engage in rapport making and
off-topic dialogue. Research [39] has even identified methods to integrate both task- and non-
task-oriented agents together. In our human-agent study, we found that 89.28% (3967/4443) of
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programmers’ utterances were task-oriented. The abundance of task-oriented dialogue suggests that
it may be advantageous for the future to implement PairBuddy as a task-oriented conversational
agent that utilizes a pipeline architecture for intent classification, state tracking, and response
generation. Subsequently, we must collect a large enough dataset of pair programming dialogue to
train machine learning models to generate automated responses to programmers’ queries.

Furthermore, we must consider the choice of datasets used for both task- and non-task-oriented
conversational agents, since differences exist between human-human and human-agent dialogues. In
human-human dialogue, changing roles is not often explicit [151], whereas in human-agent dialogue,
role exchanges involve verbal permission and acceptance. Additionally, lengthy discussions about
ideas are more prevalent in human-human than in human-agent conversations. The difference
in dialogue style may require that the natural language processing, dialogue state tracking, and
dialogue policy components of future conversational agents consider training their machine learning
models on human-agent conversations rather than human-human.

(5) Designing for Varied Expertise of Programmers
Our main study explored the similarities and differences between expert (professional) and

novice (student) programmers. However, self-efficacy scores and interview questions revealed
only marginal differences. For instance, students considered PairBuddy’s feelings (5/8) much more
than professionals (1/6), suggesting that professionals used PairBuddy more as a tool rather than a
partner. However, participants’ familiarity in the applicable domain (Java) may have mattered more,
as two professionals (MP13 and MP14) had less experience than many students. Particularly, our
most experienced professional (MP10) uniquely ignored PairBuddy, opposed negative feedback, and
excelled at the task. In regard to trusting PairBuddy, there was a slight discrepancy: 3/6 professionals
vs. 5/8 students. While our interviews weren’t conclusive, individuals with particularly low or
high experience with a domain tend to trust computer answers more [37, 206]. Hence, future work
will focus more specifically on the range of programming experience within both educational and
professional settings.

(6) Manifesting Anthropomorphic Features of a Programmer
Although we strive to integrate anthropomorphic features into PairBuddy, we received mixed

reactions from our participants. While PairBuddy’s voice felt natural to participants, its avatar
was less impactful, and many participants even minimized the avatar window. Preferences toward
a more robotic or a more human-like PairBuddy were very mixed as well. For the past 20 years,
researchers have argued in favor or against including anthropomorphic features in intelligent
agents [72, 103]. Therefore, it is still an open-ended question whether PairBuddy should use
features such as embodiment or emotional intelligence. In future studies, we will investigate
whether anthropomorphic features are appropriate for PairBuddy.

Preferences toward PairBuddy’s dialogue and interactions varied across many dimensions (e.g.,
human-like vs. robotic, positive vs. negative feedback). Participants’ opinions often contradict one
another, hindering the design of a universally accessible PairBuddy. Even for broadly accepted
preferences (e.g., casual vs. polite), opinions will inevitably diverge with a larger sample size. To
accommodate individual differences, PairBuddy’s future design should be malleable, allowing users
to tune PairBuddy’s parameters to their liking [15]. One possible solution is to make PairBuddy’s
script interchangeable. For example, a robotic version of PairBuddy’s script might say, “I’m 80%
certain that there is an error on line 45,” while a casual version would say, “I think we might have
made a mistake on line 45.” However, interchangeable scripts only go so far, so in the future, we
will explore additional avenues to provide a personalized PairBuddy experience.
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6 CONCLUSION
In this research, we explore the uncharted territory of interactive pair programming conversational
agents through the user-centered prototyping of our agent – PairBuddy. This work makes several
contributions, including ones that generalize beyond pair programming:

• Anthropomorphic properties of PairBuddy arose from integrating diverse interface and
interaction mechanisms (embodiment, dialogue styles, and agent actions) and programmer
characteristics (technical skills and soft skills). These properties stem from an integration
of novel concepts from our extensive literature review of various domains such as human-
computer interaction, software engineering, artificial intelligence, psychology, and education.
These properties can be utilized for advancing programmers’ interactions in intelligent-
tutoring systems and interactive educational platforms.

• Our focused design, evaluation, and refinement cycles through the use of two Wizard of Oz
studies incrementally evolved PairBuddy’s functionality to realize a robust conversational
agent for pair programming. This approach can drive the design for programming conver-
sational agents in other domains of programming including educating children, end-user
programmers, and people with disabilities.

• The wizard’s script and study materials for both pilot [5] and main studies [4] are available
online for reproducibility by researchers and practitioners.

Our study results showed programmers’ positive attitudes towards using PairBuddy. The results
confirm the feasibility of PairBuddy as a programming partner that can significantly advance
programmer-computer interactions. PairBuddy has significant potential to change how program-
ming is learned and how programming is done. In the words of one of our participants with 20+
years of experience, “I think what I learned out of this [study] is that [PairBuddy has] a lot of potential
and... it excites me a lot where technology is going.”
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