
Information and Software Technology 138 (2021) 106633

A
0

V
S
a

b

c

d

A

K
A
C
O

1

a
o
p
P
t
t
F
s
a
h

h
s
a
f

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

isual Resume: Exploring developers’ online contributions for hiring
andeep Kaur Kuttal a,∗, Xiaofan Chen b, Zhendong Wang c, Sogol Balali d, Anita Sarma d

University of Tulsa, OK, USA
Massey University, New Zealand
University of California, Irvine, USA
Oregon State University, OR, USA

R T I C L E I N F O

eywords:
ggregators
ontribution profile
nline communities

A B S T R A C T

Context: Recruiters and practitioners are increasingly relying on online activities of developers to find a
suitable candidate. Past empirical studies have identified technical and soft skills that managers use in online
peer production sites when making hiring decisions. However, finding candidates with relevant skills is a
labor-intensive task for managers, due to the sheer amount of information online peer production sites contain.
Objective: We designed a profile aggregation tool—Visual Resume—that aggregates contribution information
across two types of peer production sites: a code hosting site (GitHub) and a technical Q&A forum (Stack
Overflow). Visual Resume displays summaries of developers’ contributions and allows easy access to their
contribution details. It also facilitates pairwise comparisons of candidates through a card-based design. We
present the motivation for such a design and design guidelines for creating such recruitment tool.
Methods: We performed a scenario-based evaluation to identify how participants use developers’ online
contributions in peer production sites as well as how they used Visual Resume when making hiring decisions.
Results: Our analysis helped in identifying the technical and soft skill cues that were most useful to our
participants when making hiring decisions in online production sites. We also identified the information
features that participants used and the ways the participants accessed that information to select a candidate.
Conclusions: Our results suggest that Visual Resume helps in participants evaluate cues for technical and
soft skills more efficiently as it presents an aggregated view of candidate’s contributions, allows drill down
to details about contributions, and allows easy comparison of candidates via movable cards that could be
arranged to match participants’ needs.
. Introduction

‘‘When it comes to hiring, I’ll take a GitHub commit log over a resume
ny day ’’ [1] tweeted John Resig, the creator of jQuery. Assessing
nline contributions has become increasingly popular with the growing
opularity of peer-production sites such as GitHub and Stack Overflow.
otential employers, as well as recruiters, are increasingly mining
he history of public contributions to locate suitable candidates, filter
hrough applicants for a position, or inform interview interactions [2].
or example, Barney Pell, the founder of Powerset said, ‘‘online open-
ource communities like GitHub bring large numbers of developers together
nd are thus a natural place for recruiting ’’ [3]. Several research studies
ave also confirmed the use of GitHub to recruit developers [2,4–9].

A key reason behind the popularity of these peer production sites as
iring aids is the level of transparency afforded by them. For example,
ites like GitHub, allows access to in-depth details about developers’
ctivities: lines of code committed, issues resolved, code reviews per-
ormed, and interactions and discussions around the code that the

∗ Corresponding author.
E-mail address: sandeep-kuttal@utulsa.edu (S.K. Kuttal).

developer participated in. Research has shown that managers and
developers use such information to form impressions of new employees
or their colleagues when evaluating them [2,4] or their code [10].
For instance, the contribution history allows reconstructing what is the
developer working on, what their code looks like, their frequency and
speed of work, and how they work and interact [5]. Non-technical skills
such as developer’s motivation/passion can also be inferred based on
the projects they own, have contributed to, or the diversity of projects
or languages in which they are involved [2,4]. Similarly, collaboration
skills can be assessed through discussions or code review comments, as
these reveal how developers talk about their work or negotiate changes
to their project.

However, assessing the online contributions of potential job candi-
dates is not easy. Such evaluations require hirers to process a massive
amount of information that is often fragmented across multiple projects
or even different types of archives (e.g., code hosting sites vs. technical
vailable online 27 May 2021
950-5849/© 2021 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.infsof.2021.106633
eceived 23 June 2020; Received in revised form 13 April 2021; Accepted 11 May
 2021

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:sandeep-kuttal@utulsa.edu
https://doi.org/10.1016/j.infsof.2021.106633
https://doi.org/10.1016/j.infsof.2021.106633
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106633&domain=pdf


Information and Software Technology 138 (2021) 106633S.K. Kuttal et al.

a
t

v
l
l
s
f
c
w

t
m
l
b
p
b
c
w
d
d

question and answer (Q&A) forums). Hence, creating the problem of
information overload and increased cognitive load because of frequent
context switching between the archives. Potential employers, who have
limited time and many applicants to review, are unlikely to spend
significant amounts of time searching online archives. Marlow and Dab-
bish [4] found that employers assessed those online activities that were
‘‘low-effort’’. In the majority of cases, employers did not investigate
the contribution or interaction details, and instead focused only on the
aggregate amounts of activity, despite identifying interaction style and
type of contributions as important factors for hiring decisions [4].

To alleviate the problem of excessive information load, researchers
and practitioners have developed various tools for quickly evaluating
developers’ online activities, e.g., CVExplorer [6], Statocat [11], and
MasterBranch [12]. These tools leverage developers’ online activity
traces, but still do not provide an integrated view of activities across
various platforms (see Section 8). This is a problem since developers
tend to be active on multiple technical platforms.

To address these challenges, we designed a profile aggregation tool,
Visual Resume, that aggregates the activity traces of developers across
different types of contributions and repositories into a single developer
profile. Visual Resume goes well beyond the current state-of-the-art
aggregator sites by: (1) aggregating data across two different types of
peer-production sites–GitHub and Stack Overflow, (2) creating profiles
that not only provide overviews of activities, but also allow deeper
exploration of contributions that are contextualized and easy to access,
(3) extracting and visualizing quality attributes of contributions, and
(4) allowing side-by-side comparison of contributors and different types
of contributions.

We designed and evaluated an initial prototype of Visual Resume to
study how employers (those experienced with hiring) can use aggrega-
tors and formatively evaluated it in [13]. Based on this evaluation and
participants’ feedback, we extended the prototype to include additional
features for assessing the quality of contributions. In this paper, we
present: (1) the set of design guidelines for creating aggregators, (2)
an extended version of Visual Resume and its implementation details,
(3) a user study comparing evaluation of ‘‘job candidates’’ via GitHub
and Stack Overflow, and with Visual Resume, and the set of cues that
participants used when making their evaluation.

2. Background

A developer’s technical and social skills are crucial for their ef-
fectiveness in a team, especially in a global setting [14–16], where
differences in organizational culture can make it challenging to build
a working (trust) relationship [17]. Numerous studies have found that
trust among team members allows them to work effectively [18,19].
Past interviews of respondents in global development settings have
identified the characteristics that people look for when evaluating the
fit of a new team member and if they can be trusted, namely: technical
competency, collaboration and communication proficiency, and how
passionate they are about the project [14,18]. Similarly, research on
recruitment in online communities has found technical and social skills
play an important role in making hiring decisions [2,4,20,21]. Here, we
summarize how different types of skill sets are used for evaluating job
candidates by reviewing the literature (see Table 1).

Technical Skills These are developers’ skills related to writing code
nd the quality of the code. Technical skills can be further divided into
wo areas.
Coding Competency, the primary qualifications of any software de-

eloper include their programming knowledge and coding ability. The
evel and amount of past activities (in a project or programming
anguage) indicate an individual’s experience level [5,18]. Managers
eek the following cues from an online environment: (1) owned and
orked projects, (2) frequent contributions to projects, such as providing
ommits or answering questions, and (3) the number of languages in
hich a candidate is proficient.
2

(

Table 1
Candidate qualities and activity traces.

Quality inferred Quality cues

Tech
skills

Coding
competency

Level and amount of past visible activity
– Number of projects owned or forked
– Number of commits/issues/comments
– Frequency of commits/issues/comments
– Programming language used

Quality
of work

Content of the contribution
Community acceptance of the work
– Number of accepted commits/answers
Test case inclusion

Soft
skills

Collaboration
proficiency

Visible communication activity
– Number of comments/answers/questions
– Types of comments/answers/questions
Endorsement of contributions
– Number of followers
– Reputation scores

Project
management

Number of projects owned

Motivation Recency and volume of commits/issues/comments
– Number of commits/issues/comments
– Recency of commits/issues/comments
Number of non-work-related side projects
Diversity of skills
– Number of programming language
– Number of contributed projects

Quality of Work, the quantity of an individual’s contributions must
be understood alongside their quality, which can signal a candidate’s
competence and skill level [4]. Quality is a subjective measure, and
its signals can range from code reviews to test coverage metrics. While
managers most frequently use the actual lines-of-code produced (or the
post), other criteria exist. For example, contributions that include test
cases can indicate a well thought out contribution [2,22]. Similarly,
information about whether the community accepted a candidate’s work
(e.g. commits) can also indicate quality [4,21].

Soft Skills These are the non-technical skills related to motivation,
project management skills and collaboration proficiency of developers.
Soft skills can be divided into three categories.

Collaboration Proficiency, when deciding to collaborate or trust oth-
ers, key factors include whether the person is polite or arrogant, and
whether they are willing to help others and provide sufficient context
to make their solution useful [14]. An individual’s interaction histories
can indicate whether she helps others and what she is like to work
with [5,23,24]. Developer activities that serve as cues for (positive)
interactions include: (1) comments regarding issues, (2) answers or
questions submitted in Q&A forums, and (3) details about the nature of
these activities, such as whether developers provide polite, articulate,
and helpful answers. Endorsements also can be used as a proxy to assess
collaboration ability [2].

Project Management Ability, managers prefer candidates who have
some management skills [25]. When someone owns a project, they need
to set the projects overall design, manage incoming contributions, and
interact with potential contributors [4].

Motivation/passion, an important trait of volunteer contributors is
heir passion. Studies [18,26,27] show that motivation and perfor-
ance are deeply connected: highly motivated individuals are more

ikely to perform better and influence future engagement. It has also
een found that developers are likely to trust colleagues who are
assionate about their work. A developer’s motivation can be indicated
y: (1) the recency and volume of activities (e.g. commits, issues,
omments) across projects, (2) the number of owned or forked projects,
hich are not directly related to the developer’s own work, but are
one as a hobby or for fun [4], (3) the diversity in languages that a
eveloper is comfortable with and the diversity in projects they take on
e.g., different technologies and programming languages) [2]. Research



Information and Software Technology 138 (2021) 106633S.K. Kuttal et al.

h
c
t
p
d
c
t

t
f
t
i
b
t

3

a
i

t
T
e
b
q
p
c

c
S
a
p
e
q
r

3

t

l
s
a
e
p
d
a

l
m
a
u
q
c
o

t
s
s
w
a
s
s

3

a

o
a
t
i
p

p
m
a

has found that employers and developers have started using online
project hosting sites to evaluate job candidates [4] or to assess the
performance of their colleagues [2,22]. Since contributions in online
peer production sites are archived and maintained by a third party, they
are seen as assessment signals that are hard to fake [26], and managers
prefer them over static resumes or out-of-context code samples [2,4].

However, the amount of effort that is required to reliably assess the
skills of a developer using online activities is non-trivial. To evaluate
the lines of commit in GitHub, one must first identify the projects to
which a developer has contributed from their profile and then navigate
to specific projects. Once on the project page, one must scroll through
all the commits in the project to find the developer’s commits, which
can be located by recognizing their user-id. Clicking on the commit-id
takes the user to a page where the lines of code changed are listed. If
there are multiple commits, one has to keep scrolling through the list
to identify the commits from a particular developer.

Marlow and Dabbish [4] found that evaluators did not assess the
actual lines of code changed, but instead used their perception of the
reputation of the project as a proxy for the quality of a developer’s
contributions. This was especially true if a contribution to a high-status
project did not appear in the top recent activities of the project, since
this would entail scrolling through hundreds of commits to identify the
commit from the developer. Assessing developer interactions requires
even more effort. To evaluate the discussions around a code snippet,
one must first identify the pull request associated with the commit (and
the lines of code) and then read the discussion around it. In fact, most
evaluators did not assess information regarding developer interactions
when forming hiring impressions in GitHub [4].

3. Guidelines for creating Visual Resume

Designing a tool that allows exploration and assessment of develop-
ers’ skills from online contributions requires answering the following
questions:

Question 1: What information should we display? Past studies (Table 1)
ave found that both technical and soft skills are important in a
andidate; and developers contribute to multiple projects and different
ypes of content. While a few initial aggregator sites exist [2], they only
rovide activity overviews: projects and programming languages that a
eveloper has contributed to or owns, and overall commits. To assess
ontribution details, one still must exert the manual effort to navigate
o the developer’s profile or the project page.
Question 2: How should we present information that is contextualized to

he project, easy to access, and allows comparison? Typically, employers
irst screen developers based on the quantity of their contributions, and
hen perform a detailed comparison on a subset of developers [28]. This
ndicates that profiles not only need to present a high-level overview,
ut also allow easy access to details about contributions in a manner
hat facilitates comparison across candidates.

.1. What to present?

The following guidelines are derived from the cues that managers
nd hires are known to use when making their decisions, as aggregated
n Table 1.

DG 1: Aggregate cues across projects and sites. Aggregating indi-
viduals’ public activities across online communities can help build more
accurate profiles [5]. There are two reasons for this. First, aggregating
activities across communities overcomes the problem of fragmentation.
That is, developers may be active in one community, but inactive in
others. Such a developer’s profile will be inaccurate if only one com-
munity (or one type of skill) is considered. Second, aggregating data
from different sites into one site helps solve the problem of disparate
design across sites. That is, project managers do not have to navigate
through different site designs and can therefore be more efficient.
But, more importantly, developer profiles will be consistent, thereby
3

p

avoiding the formation of biased impressions because of differences in
how individual sites highlight specific contribution types.

DG 2: Provide cues for both technical and soft skills. Project
managers make use of activities involving both the technical practices
and the social communication (soft skills) when evaluating contribu-
tions [22]. A developer’s complete profile should include activities that
signal both types of skills (see Table 1) to project managers.

DG 3: Provide cues for quality. In addition to quantity of contribu-
ions, it is also important to reflect the quality of a developer’s work [4].
able 1 lists a set of cues that can be used to assess quality. For
xample, the quality for a developer’s answers in Stack Overflow can
e measured by whether their answers were accepted or up-voted; the
uality for commits in GitHub can be signaled through whether their
ull requests (or commits) were accepted (or merged), and whether the
ontributions contained test cases.

DG 4: Present social standing in the community. Many sites in-
lude badges or reputation points to motivate their users to participate.
tack Overflow users accrue reputation points when their contributions
re accepted. Similarly, GitHub developers collect followers if their
rojects are interesting or perceived as high-quality work [22]. These
ndorsements serve as proxies for the candidate’s overall amount and
uality of work. However, it is best to provide community-derived
eputation values, as they are likely to be more trustworthy [28].

.2. How to present?

We recommend that contribution information be displayed through
he following mechanisms.

DG 5: Summarize activity. Activities are archived over time, but
arge volumes of archived activity can overwhelm a user. Concisely
ummarizing expertise based on types of activities ameliorates this issue
nd reduces the burden of investigating profiles to assess developers’
xpertise and contributions. For example, summaries of languages used,
rojects contributed to, and commits can help project managers assess
evelopers’ technical skills. Summaries of comments, questions and
nswers can help project managers examine developers’ soft skills.

DG 6: Visualize summaries. Project managers favor cues that take
ess effort to verify [4]. Visually summarizing activities can help project
anagers quickly assess developers’ quality and allow them to view

ctivities over time. For example, a visual summary of accepted versus
naccepted commits can give project managers an overview of the
uality of a developer’s contributions. Similarly, developers’ soft skills
an be judged by viewing a visual summary of answers versus questions
r forked versus owned projects.

DG 7: Allow drill down. Detailed activity information can shape
he evaluation outcomes for complex contributions [29]. However,
ince project managers favor cues that take less effort [4], activity
ummaries can decrease the effort to access information indicating
ork quality. For example, in order to assess a developer’s coding
bility, project managers may be interested in looking at not only the
ummary of their commits, but also the source code related to all or
ome of their commits.

.3. How to compare?

We recommend the following interaction mechanisms to effectively
nd efficiently evaluate candidates.

DG 8: Allow quick and detailed assessment. Project managers
ften first filtering candidates by assessing summaries of technical
ctivities and then taking a more detailed look at activities to assess
he experience and social skills of a candidate [2]. In other words, they
nitially skim through candidates and then perform a more detailed
ass.

DG 9: Allow pairwise comparison. Past studies have shown that
airwise comparison is a key recruitment strategy [28,30]. Project
anagers typically develop a list of desired knowledge, skills, and

bilities, and then use pairwise comparisons to reveal the relative

riority of potential candidates.



Information and Software Technology 138 (2021) 106633S.K. Kuttal et al.

a
c
f

s
d
t

t
a
c

r
c
s

t
a

r
s
Q

c

4

w
w
i

c
a
c
S
t
t
T
c
p
c
t
h
p

d
f

i
b
c
r

p
O
v
i

m

4

a
o
f

e
c
a
f

4. Visual resume

Visual Resume provides concise summary information about de-
velopers’ activities to allow a quick assessment of their skills (DG 8)
and facilitate comparison across candidates (DG 9). The source code
for Visual Resume can be found at [31]. It uses a card-based design
that summarizes contribution histories from two types of online peer
production sites (code-based and Q&A) (DG 5)and allows quick drill
down to specific contributions (DG 7). In this section, we present the
design process behind Visual Resume, the information that it uses to
create developer profiles, and its user interface.

4.1. Design of visual resume

We first identified the information that should be part of the devel-
oper profile by leveraging the cues identified from the literature and
summarized in Table 1. Additionally, we conducted interviews with
two industry contact team leads with extensive hiring experience. We
asked them about current practices when making hiring decisions and
how they evaluated online contributions. We then asked them to select
the most relevant cues from Table 1. Before implementing the tool,
we conducted two rounds of paper prototyping by creating wire-frame
mock-ups for the tool. The paper prototype evaluation was done with
other researchers in the group.

We then implemented the first version of Visual Resume, which was
formatively evaluated by nine industry partners (P1–P9); the details
of this evaluation can found in our prior work [13]. The results of
this evaluation showed that (all nine) participants used the summa-
rized views to create overall impressions and then drilled down for a
deeper view of the contributions’ contents. Participants recommended
including contribution quality metrics as part of the developer profile.
For example, one of our participants (P4) mentioned, ‘‘...[while looking
at the activity] this is meaningless without quality...how can he have fixed
anything if there is no code in the commit ’’.

We therefore extended Visual Resume to include metrics for quality
of contribution. Additionally, we synthesized the set of design guide-
lines from the literature, our experiences in building the initial version
of Visual Resume, and the feedback from participants. We used these
design guidelines when extending Visual Resume. In the rest of this
section, we describe the design and implementation of the second
version of Visual Resume.

4.2. Contributor profile

Visual Resume summarizes the following pieces of information as
part of the developer profiles.

4.2.1. Historical activities
Developers’ activity histories gather activity traces in terms of issues,

comments, commits, questions, answers, and join period (DG 2). These
ctivities are obtained by mining issue tracking systems and version
ontrol systems (DG 1). Questions and answers also can be collected
rom online Q&A forums.

Issues: issues refer to bugs and contributions of new code that are
ubmitted by developers and stored in issue tracking systems. For each
eveloper, we collect the total number of issues they submitted and the
otal number of issues they closed before a specific timestamp.

Comments: comments are discussions created in a project’s issue
racker. These discussions often focus on resolving specific issues and
re technical in nature. We collect the total number of comments
reated by each developer before a specific timestamp (comments).

Commits: Commits refer to changes of source code performed to
esolve related issues and improve features. They are saved in version
ontrol systems. We collect the total number of commits that are
ubmitted to the version control system by each developer and the
4

total number of commits that are committed by each developer before
a specific timestamp.

Questions: Developers pose questions to seek help from others, of-
en in regard to programming. We collect the total number of questions
sked by each developer before a specific timestamp.

Answers: Developers provide detailed answers to questions to earn
eputation. Accepted or voted up answers can earn a higher reputation
core. We collect the total number of answers that are submitted to the
&A forum by each developer before a specific timestamp.

Join Period: we collect this information both from the version
ontrol system and the Q&A forum.

.2.2. Quality of work
The quality metrics that we use is derived from cues for quality of

ork as described in Table 3. We measure the quality of developers’
ork from the following five metrics: centrality, passed tests, closed

ssues, merged pull requests, and accepted answers. (DG 3)
Centrality: centrality is to measure whether developers make core

ontributions i.e., contributions that span multiple files in the code base
nd can be of high impact [32,33]. We are interested in identifying the
entrality of each commit made to the project’s source code repository.
ource code can be thought of as forming a network of different files
hat are connected to each other. One common metric for computing
he centrality of each file in the project is eigenvector centrality [34].
hen the source code file level centrality needs to be translated into
ommit centrality. As commits made by developers often touch multi-
le code files, we define each commit’s centrality as the mean of the
entrality of each of the code files that are related to the commit. From
his we generate a centrality score for each commit. A commit with
igh centrality scores deals with files that are closer to the core of the
roject than those with low centrality scores.

Passed tests: passed tests indicate whether commits made by the
eveloper are successfully compiled and pass the tests. We use the
ollowing procedure to verify every commit:

1. Check a commit: we use git commands – ‘‘git reset –hard, git
clean –xdf, git checkout’’ – to return to a specific commit and
check it.

2. Compile and run all tests: this step is to verify the commit
by calling out compiling and testing systems (e.g. Maven, Ant,
rails-dev-box).

3. Process the results: finally, we retrieve the past-test status of the
commit by checking the output result, allowing us to see whether
the build and test for the commit succeeded.

Closed issues: issues are used to keep track of bugs, enhancements,
deas, or other requests. This metric reveals whether issues submitted
y the developer are closed or still open. Once the bug is fixed, the new
ontribution can be merged, or once the request is accomplished, the
elated issue is closed.

Merged pull requests: pull requests are a type of issue. However,
ull requests involve changes the developer has pushed to a repository.
nce a pull request is opened, the changes are fully discussed and re-
iewed by collaborators and other contributors before they are merged
nto the repository.

Accepted answers: an accepted answer refers to the answer that is
arked as such by the person who asked it.

.2.3. Other cues
Endorsement: It is the metrics for trust of the community members

nd can be unique to socio-technical platforms. We collect the number
f followers from the version control system and the reputation score
rom the Q&A forum. (DG 4)

Projects/languages: To assess the breadth of a developer’s experi-
nce, we collect the number of owned or forked projects from version
ontrol system. The programming languages/tags are also gathered to
ssess the diversity of projects from the version control system and Q&A
orum.



Information and Software Technology 138 (2021) 106633S.K. Kuttal et al.
Fig. 1. Drill-down functionality for (a) GitHub card when commits tab selected, (b) the quality of commits and (c) details of the commits.
Fig. 2. Drill-down functionality for (a) GitHub card when issue tab selected, (b) the quality of issues and (c) details of the issues.
4.3. User interface

Visual Resume presents a candidate’s information through ‘‘cards’’
–small cards that are 300 x 500 pixels. These cards evoke the notion of
business cards, and allow quick side- by-side comparison of developers
(DG 8, DG 9)– an important recruitment strategy [28,30]. Fig. 1(a)
shows a candidate’s GitHub (GH) card, displaying his activity summary.
The left top of the card shows his profile information GitHub ID,
picture, tenure in the site, personal website(s) or blogs, and number
of followers (DG 4). A user can click and navigate to each item in
the profile. In the rest of the card, contributions are summarized and
visually presented (DG 5, DG 6) as project managers favor information
that takes less effort to verify [4]. While details of contributions are
the final criteria that shape evaluation outcomes [5], they are harder to
access. For example, to assess coding ability, an employer may want to
look at the source code and its style, but doing so may require scrolling
through numerous pages of commit history in a (highly active) project
5

to locate to the specific contribution. Such a detailed assessment of all
of a developer’s contributions or for all candidates is infeasible.

To overcome this problem, Visual Resume allows easy access to
contribution details. At the right top of the card, a radial chart provides
a breakdown of the repositories in which the person is most involved,
based on the number of their commits, comments, and issues in the
repository. Hovering over a slice of the chart presents the repository
name, the main programming language of the repository, and the num-
ber of watchers. A user can click on a slice and drill down to examine
the contributions of the developer unique to that specific repository
(DG 7). Clicking on a slice in the radial chart opens a new card, which
is similar to the GH card (and therefore not shown in Fig. 1, but shows
information pertaining to the selected repository. If contributions by
language is selected, the radial chart changes to show the breakdown
of the programming languages of the candidate’s contributions. In this
case, the slices in the chart aggregate activities (commits, comments,
and issues) across all projects that use the same programming language.
In the lower half of the GitHub card, the bar charts summarize a



Information and Software Technology 138 (2021) 106633S.K. Kuttal et al.
Fig. 3. Drill-down functionality for (a) Stack Overflow card, (b) the quality of answers and (c) details of the answers.
user’s contributions: commits, issues, and comments across projects on
a monthly basis (DG 6). The chart in the middle of the card presents the
entire history of the candidate, from which a user can select a specific
date range.

Our prior study [13] signaled that assessing the quality of contri-
butions was important in the decision-making process. Visual Resume
is extended to include more explicit quality metrics that allow easy
assessment of commits and issues (DG 3). At the bottom of the GH card,
clicking the commit’s quality opens a new card, which provides two
quality metrics (see Fig. 1(b)). The first metric for measuring commit
quality checks whether commits passed a test case or not, which is pre-
sented in the top bar chart. The bottom chart also provides a summary
of commit centrality, allowing viewers to identify if commits deal with
core files. The card (see Fig. 2(b)) on quality opens by clicking ‘‘issue
quality’’ under the Issues tab (see Fig. 2(a)) at the bottom of the GH
card. The first chart displays the summary of opened or closed issues,
which indicates how enthusiastic the person is about participating in
the development of the project. The second chart shows the information
on whether pull requests are merged or not, which can signal the
quality of the work based on the acceptance by the community.

Contributions are displayed either as a stacked bar chart or a
grouped bar chart (DG 6). In the former, all types of contributions are
stacked into a single bar, whereas in the latter, each contribution type is
represented by its own bar. These charts can help portray contribution
patterns or trajectories. For example, if a developer has become more
active in a project, the stacked bar chart easily shows this increase,
regardless of the type of contribution. However, if one wants to track
the activity levels of a specific type of contribution (e.g., commits), then
the grouped bar chart is a better option. Hovering over a segment in
the chart displays the number of contributions for the month in a pop-
up. Clicking a bar (segment) in the bar chart opens a new (drill-down)
card that displays detailed information on the type of contribution. For
example, if the segment of the 05/13 bar in the (stacked) bar chart that
shows the commits that passed the test case is clicked (see Fig. 1(b)), a
new card opens listing commits and an excerpt of the commit comment
(see Fig. 1(c)). We opted to display the commit message instead of the
commit-id since it can provide some information about the commit.
The commits include an annotation about whether it passed the test
case. A user can click the View Commit link to further investigate a
contribution. Doing so takes the user to the GitHub page, where they
can view the commit and the lines of changed code.
6

Fig. 3(a) shows a Stack Overflow (SO) card, which is very similar
to the GitHub card. The top left of the SO card shows the tenure and
reputation score in Stack Overflow. The radial chart gives a break-
down of the various tags (programming languages, concepts, etc.) with
which the person is most involved based on their number of questions,
comments, and answers. Bar charts show the individuals contributions
(in terms of questions, answers, and comments) on a monthly basis.
Clicking ‘‘answer quality’’ under Answers tab at the bottom of the SO
card opens a new card (see Fig. 3(b)), which shows whether answers
were accepted by the question submitter. This metric indicates the
quality of answers.

Clicking on a specific activity bar opens a new card, Fig. 3(c)) that
lists the contributions (in this case a list of answers). The answers
include annotations about the number of up-votes, whether it was
accepted (thumbs up sign), and the number of comments associated
with that answer. Users can drill down to view the full answer, its
associated question, and comments by clicking on the View Answer
link, which takes them to the Stack Over page.

Each person’s activity is shown in a card, which can be closed or
rearranged by simply selecting and moving a card across the screen (DG
8). The cards allow easy pairwise comparison. Viewers can compare
contributions between multiple users or for the same user in different
contexts (DG 9). For example, users can compare the GitHub contribu-
tions between two developers or the contributions across different sites
(Figs. 1 and 2), projects, or programming languages.

4.4. Implementation

Since Visual Resume is designed as a web application, it does not
need to be installed on the client site. It follows a 4-step approach:
collect, process, filter, and visualize (see Fig. 4). The former two steps
are performed on the server side, and require a wrapper for each
repository; the latter two are part of a rich web client that uses a
model-view-controller architecture.

Collect: Visual Resume can collect data across different repositories.
Each data source requires a specific extractor that collects and stores
the data in our database. Currently, we have implemented extractors
for two different types of peer production sites: GitHub and Stack
Overflow [35]. Extractors for other sites can be easily designed. We
need site-specific extractors, since data from each site are accessible in

different ways. For example, the extractor for GitHub uses the GitHub



Information and Software Technology 138 (2021) 106633S.K. Kuttal et al.
Fig. 4. Architecture of Visual Resume.

API. While the GitHub API only allows 5000 requests per hour when
using basic authentication, requiring us to periodically extract the data
and incrementally update the database, Stack Overflow provides peri-
odic data dumps of the entire history. The extractor needs to identify
the new data from the dump to update the database.

Process: This step has three functionalities. First, it transforms data
collected in different formats into a uniform format (we use Neo4j
a graph database [36]). Second, it creates a data model designed to
generalize across different types of project hosting and Q&A sites. New
sources of information (discussions in mailing lists vs. comments on an
issue) can be easily added to the schema. The data is linked such that
aggregations and queries can be performed per user, per repository,
per language, per tag, etc. Other pertinent information (personal page,
blogs) available from profiles in GitHub or Stack Overflow are also
linked. This model is then encoded as a JSON file.

Visualize: The visualization is created by using the d3.js frame-
work [37]. Currently, our card template uses a top-down layout. It
uses label, radial chart, and bar chart widgets to display aggregated
data. Different templates that use other layout or widgets can be easily
implemented and incorporated.

Filter: Different filters can be used to adjust the amount of infor-
mation presented to the user. A basic filter that we have currently
implemented is time period selection. We can easily create other filters
that adjust other kinds of information (e.g., the amounts or types of
contributions).

5. User study

We conducted a scenario-based, task analysis study with ten par-
ticipants to: (1) understand what information participants seek out
when they have to choose from a set of potential job candidates, and
(2) investigate how participants collect information to make a hiring
decision in a peer production sites such as GitHub and Stack Overflow
vs. the information provided by Visual Resume. Note, that we were not
seeking (or expecting) that all participants would converge on the same
candidate, since this is a subjective decision; instead, we observed how
participants arrived at their decisions.
7

Table 2
Background of study participants.

Code Background

P11 Vice president of a large organization. Experiencing in hiring
for over 12 software related employees as the hiring
manager.

P12 Data scientist at a small startup with experience in hiring
colleagues.

P13 Research scientist at a government software contractor for 5
years. Experience in recruiting and hiring interns as well as
employees.

P14 Director of software product development at large
corporation.

P15 Research computer scientist with experience in hiring.

P16 Software engineer at a large corporation. Experience in
interviewing several team members.

P17 Software system analyst at medium size corporation.

P18 CEO of a software startup for 5 years.

P19 Research lab director at large corporation. Experiencing in
hiring over 20 software related positions.

P20 Computing coordinator for 16 years. Experiencing in hiring 6
developers.

5.1. Study participants

We recruited ten participants for our study. These participants were
selected to represent individuals who had experience in the hiring
process. We also recruited participants to obtain both corporate and
small software company participants. This was done because the soft-
ware engineering practices used in established corporations vary from
those used in lean startup operations, where agile methods are more
prevalent. Further, we included participants who hire for their teams
as well as those who interview their peer developers. Differences in
typical development practices may in turn favor different cues for
evaluating job candidates. Table 2 summarizes our study participants’
backgrounds.

5.2. Study design

Participants were told that they were the technical lead of a project
and had to assess a set of candidates in response to a job advertisement.
We created the job description to represent a typical posting for web
development positions. To do so, we reviewed postings on popular
job posting sites, such as LinkedIn, Careers 2.0 [38], and Career-
Builder [39]. We included aspects that typically appeared across many
postings, including: position description, job responsibilities, required
qualifications, and benefits.

The user study was within-subjects and comprised of selecting top
two candidates from a given set of five candidates for each treatment.
The evaluation tasks were designed based on our formative study [13]
and current industry practices [2]. We interviewed two industry con-
tacts who were team leads with extensive experience in hiring. We
asked them about current practices when making hiring decisions and
how they evaluated online contributions.

The tasks were divided into two sets (Task 1 and Task 2): In Task 1,
participants were asked to use GitHub and Stack Overflow, or any other
online resources they wished to evaluate a set of five candidates. In
Task 2, participants were given Visual Resume, and were free to again
use any other online resources (e.g., blogs, personal website, Google
search etc.) that they wished to evaluate another set of five candidates.
The goal of Task 1 and Task 2 was to evaluate and compare the GitHub
and Stack Overflow websites with Visual Resume when making hiring
decisions to select top two candidates. Task 1 always preceded Task
2 (i.e., we did not counterbalance tasks) as we did not want to bias



Information and Software Technology 138 (2021) 106633S.K. Kuttal et al.

u
i

a
‘
l

6

C

p
o
r
r
d
a
r
t
l

o
c
d
a

d

participants’ information-seeking behavior based on the cues provided
by Visual Resume.

We asked participants to think aloud during the study, verbaliz-
ing their actions and the intention behind them [25,40]. We screen-
recorded the participant actions and collected their feedback through
an exit interview. To analyze the data from our study, we transcribed
participants’ verbalizations and actions from observations, notes, and
think-aloud data. We used the code set related to technical and soft
skills (Table 1) for analyzing the transcripts. Additional cues related to
quality of work and social competency were identified, which we added
to our (cue) code set. Two researchers collaborated on the coding until
80% agreement was reached on about 20% of the data.

5.3. Job candidate selection

We selected ten potential job candidates for the study. These can-
didates were selected to represent typical GitHub and Stack Overflow
users with some expertise in the topic areas indicated in the job de-
scription (Ruby and Java Script). To identify these candidates, we first
extracted a dataset of GitHub participants with at least one commit to
the Ruby on Rails project on GitHub. Next, we queried Stack Overflow
for these users to identify a subset of users with profiles and activity on
the site. From this sample of 2300 common users in both communities,
we then identified candidates who had monthly activity on both sites
(240 users). From this set, we randomly selected the ten candidates
for the study, and divided them into two groups. We counterbalanced
the groups of candidates used in Task 1 and Task 2. That is, half the
participants used the first group of candidates for Task 1 and the rest
used that same group of candidates for Task 2.

5.4. Limitations of study design

Visual Resume currently only collects activities from two sources:
GitHub and Stack Overflow, and our results might not generalize to
cues found in other sources. Moreover, these sites may lack contribu-
tions from underrepresented populations in software, because of which
aggregating contributions from them can perpetuate a self-reinforcing
behavior of exclusion. Future work should extend Visual Resume to
include other types of contribution sites also. Our participants were
limited to a small subset of employers who volunteered and therefore
might be biased towards assessing online contributions. There might
be learning effects since we did not counterbalance the treatments, but
this was necessary since we did not want to bias the type of information
(and sources) that participants in the Control condition would look for
based on data provided by Visual Resume. Finally, we evaluated Visual
Resume by using only ten subject candidates. Our results regarding
strategies and cues used might not hold true for a larger candidate pool.

6. Results

This Section presents the cues that participants used to evaluate
candidates’ technical and soft skills (Section 6.1), followed by a discus-
sion of the key information features that were used for the evaluations
(Section 6.2) and how the information was accessed (Section 6.3).

6.1. What cues were utilized for selecting candidates?

Participants used a variety of cues when selecting the top two
candidates from the set of given five in Task 1 and Task 2. Ta-
ble 3 summarizes the information sources, the cues, and the associated
(tool) features that participants used in the Control and Experimental
conditions.

In both the Control and Experimental conditions, participants
started by getting an overview of the candidates’ profile and then
details on personal interests. Ten participants started with profile
pages of GitHub and Stack Overflow in both conditions, making it the
8

most investigated feature. Participants also often visited candidate’s
personal websites (seven participants in Control, and six participants in
Experimental) to get an overview of candidates’ external contribution
and personal interests.

After which participants (nine participants in both conditions) fo-
cused on cues related to the amount and type of candidates’ contribu-
tions to get a thorough understanding of candidates’ technical skills.
This evaluation pattern is not surprising as participants’ primary goal
was to ‘‘hire’’ a suitable software developer, which likely prompted
them to focus on candidate’s technical skills; P12 reflected, ‘‘I also didn’t
se the Stack Overflow at all in the first task, because I believe reputation
n Stack Overflow does not depend on how well someone codes’’.

Only after evaluating technical skills they focused on soft skills, so
s to hire a candidate with a comprehensive skill set. P14 commented:
‘I checked Stack Overflow to be able to choose among them (candidate short
ist) better’’.

.1.1. Cues for technical skills
Technical skills were evaluated primarily through the perspective of

oding Competency and Quality of Work (Table 1)
Coding Competency: In both Control and Experimental conditions,

articipants reviewed candidates’ commit histories and the number
f projects candidates contributed to by either using the ‘‘GitHub
epository list’’ or the ‘‘Visual Resume repository cards’’. They largely
elied on the visualizations provided by the tools. In the Control con-
ition participants reviewed the GitHub ‘‘activity graph’’ and ‘‘recent
ctivity’’, which includes commits, opening or closing issues and pull
equests. Only one participant evaluated the details of technical con-
ributions by either drilling down to the commit page or the issue
ist.

In the Experimental condition participants reviewed the ‘‘Summary
f all Contributions’’, which also includes contributions about issues,
omments and commits (see Fig. 1a). Some participants further drilled
own into the technical contributions: commit page (three participants)
nd issue list (five participants).

Quality of Work: Participants leveraged different types of cues to
ecipher the quality of candidates’ contributions as follows:

(a) Commit Details: The ‘‘content of the contribution’’ is a key
quality evaluation criteria in Table 1. However, few participants
in the Control condition sought to assess the quality of the
contribution (only one participant viewed the committed source
code). Instead they relied on the amounts of contribution. This
could be because there is no direct metric defined in GitHub
to evaluate the quality of the committed code. Additionally,
evaluating source code would be difficult for users who were
not familiar with the project or its programming language. For
example, P17 explained: ‘‘Since I am not a Ruby or JavaScript
expert...maybe if I knew about the language itself I would try and
check the commits more deeply. I just based [my decision] on the
core commits and seeing the steady flow of the contributions in the
last couple of years mainly’’.
Six participants in the Experimental conditions used the metrics
provided by Visual Resume to assess the quality of the GitHub
contribution (features of centrality and test passes, see Fig. 1(b)).
For example, P11 stated: ‘‘[candidate] is a core contributor to sev-
eral large frameworks’’. P20 mentioned, ‘‘[I chose this candidate]
based on the number of commits, especially the commits that are
close to the core’’. Similarly, P19 also commented, ‘‘[I chose this
candidate because of] total commit but fewest fails’’..

(b) Community Up-votes: Up-votes1and Stars2 are features in Stack
Overflow and GitHub that represent the appreciation and sup-
port from community users. Three participants (Experimental

1 https://stackoverflow.com/help/privileges/vote-up.
2 https://help.GitHub.com/articles/about-stars/.

https://stackoverflow.com/help/privileges/vote-up
https://help.GitHub.com/articles/about-stars/


Information and Software Technology 138 (2021) 106633S.K. Kuttal et al.
Table 3
Cues and feature used by numbers of participants in selecting candidates across both Control and Experimental conditions (task 1 and task 2).

Data source Cues Features in Ctrl. group Features in Exp. group

GitHub

GitHub Contribution Overview
GitHub profile pages (10)

GitHub profile card (10)GitHub recent activity (9)
GitHub activity graph (4)

Programming Language Expertise Not able to display Language radial chart (7)
Commit Overview Commit history list (5) Commit history list (6)
Commit Detail Commit page (1) Commit page (3)
Repository Overview Repository list (5) Repository list (7)
Repository Detail Repository information (7) Repository card (8)
Issue Overview Issue list (1) Issue list (5)

Stack Overflow

Stack Overflow Contribution Overview Stack Overflow Profile (9) Stack Overflow Profile (8)
Answer Overview Answer list (3) Answer list (3)
Answer Detail Answer page (4) Answer page (1)
Question Overview Question list (3) Question list (2)
Question Detail Question page (1) Question page (1)
Personal Website linked to Stack Overflow Personal website (7) Personal website (6)
i
a
i
d
f
s
o

condition) verbalized using the number of up-votes and stars
as indicators of the quality of the answers or code artifacts.
For instance, P13 commented, ‘‘number of votes in answers in
Stack Overflow is a good indicator of someone’s understanding about
an issue’’. Similarly, P12 commented on leveraging the number
of stars to decipher quality, ‘‘[I choose her since] one of the
projects that she created has 4000 stars and it’s very well used in
rails community’’. Further, P15 also picked a candidate as her
final choice due to community up-votes, ‘‘he has answered some
questions, which are pretty high ranked...and his response get[s] good
feedback’’.

(c) Association with Popular Projects: Participants assessed
whether a candidate owned or contributed to popular projects.
Two participants in the Control condition and three participants
in the Experimental condition considered owning a project as
important. Similarly, two and one participants in Control and
Experimental conditions, respectively considered contributing to
popular projects as a factor to evaluate whether a candidate is a
suitable choice for a job position. For example, P20 commented
‘‘[Jeremy] seems to have contributed to the early Rails and mysql2-
gem...and has some original projects on Rails’’. In addition, P12
chose Aaron and Yahuda as his top two candidates and said,
‘‘because both founded famous projects. They were self-motivated to
see those projects come to life’’.

(d) Number of Followers: Participants considered number of fol-
lowers as a factor to determine the quality of work on GitHub—
three participants in the Control condition and four participants
in the Experimental condition. In both conditions, participants
perceived a higher number of followers to relate to a higher
quality of work. For instance, one of the main reasons P20 chose
Jose (a candidate) was ‘‘he has over 3.1K followers’’.

(e) Reputation Points: Participants considered the reputation of
the candidate as a factor for quality of work (six participants in
both conditions). For example, P11 chose Jeremy as one of his
top two candidates in the Control condition mainly because ‘‘he
is on Ruby on Rails’ contributor page. He is number 2’’. However,
reputation points in Stack Overflow were not considered by our
participants while making hiring decisions, as P12 commented,
‘‘reputation in stack overflow does not depend on how well someone
codes. Sometimes poor coders just want to help out’’.

6.1.2. Cues for soft skills
Soft skills were evaluated primarily from the perspective of Collabo-

ration Proficiency, Project Management skills, and Motivation (similar
to cues in Table 1).

Collaboration Proficiency:

(a) Interaction traces: Participants assessed communication skills
based on candidates’ communication traces: the amounts of
9

Stack Overflow contribution as well as whether the contribu-
tion was accepted or up-voted by the user community. Some
participants also reviewed the ‘‘answer page’’ in the Control
condition (four participants), and ‘‘answer list’’ in the Experi-
ment condition (one participant) to get detailed overview of the
contributions. Only a few participants, across both conditions,
drilled down to review the details of the contributions such
as, the content of ‘‘questions’’ (one participant in both condi-
tions) and ‘‘answers’’ (four and one participants in the Control
and Experimental conditions, respectively). Three participants,
during the feedback session, emphasized that they reviewed
how the candidates phrase their questions/answers and their
engagement with the community. For example, P15 commented,
‘‘by looking at some of his responses in Stack Overflow, he is able to
communicate, and his responses get good feedback’’. In addition,
P20 commented, ‘‘[his] Stack Overflow presence is very active. [He
has] good communication skill and willingness to help others’’.

(b) Endorsements: Participants used endorsements to evaluate can-
didates. Six in Control and four in Experimental condition
considered endorsements such as, number of followers, the
GitHub contributor list, and reputation points to assess social
competency. For example, P17 said ‘‘I choose Aaron based on
the number of followers, he seems to be a more important part
of the ruby community. Which might indicate he is being a better
collaborator’’.She added that the number of followers reveals
candidate’s interest in the software: ‘‘he [Aaron] seems to have
quite a lot of followers, which seems to demonstrate he’s been really
known in the community and is the most enthusiastic’’.

Management skills: Four participants mentioned that past project
experience was the most significant evidence (which is inline
with [13]). P11 commented, ‘‘he [Yahuda] is a core contributor to several
large frameworks and he is a key member of a startup’’. P13 chose the
same candidate for the same reason, commenting: ‘‘he is running his own
project Wycats’’. However, the remaining six participants mentioned
that the cues contained in archives such as GitHub and Stack Overflow
were not enough to judge management skills. For example, P12 com-
mented: ‘‘the fact that they led their projects to fame makes me think that
Yehuda and Aaron are the best project managers but it’s scanty evidence. I
would want to talk to them’’. Similarly, P14 also mentioned, ‘‘it [project
management]...cannot be judged based on numbers and data alone’’.

Motivation: A variety of cues were used to infer passion for learn-
ng. Most participants considered a high volume of activity in GitHub
nd Stack Overflow as cues for interest and motivation. One participant
n the Control condition and three participants in the Experimental con-
ition evaluated contributions on Stack Overflow to evaluate passion
or learning. For instance, P11 commented: ‘‘he [Yahuda] has more an-
wers and comments on Stack Overflow showing that he is motivated to help
thers learn about the topic [Ruby]’’.P15 considered asking questions on



Information and Software Technology 138 (2021) 106633S.K. Kuttal et al.

d
i
p
t
r
a
H
u
k
t

t
d
i
o
b
P
w
p
w

t
d

Stack Overflow as an indicator of passion for learning, ‘‘he [Ryan] asked
interesting questions, that shows he wants to learn’’. Participants used the
number of up-votes to determine candidates’ enthusiasm to help the
community. Participants also used candidates’ personal website as a
source for evaluating passion. For example, P17 believed that personal
websites can indicate developers’ motivation toward their project say-
ing, ‘‘he’s been having the most contribution and is being consistent. His
website shows a lot of passion for the issues related to software’’.

6.2. What information features were used?

In addition to the cues discussed above, participants also used cues
from the following information features:

Candidate details: Participants started their exploration with an
overview of the candidate; nine participants viewed the profile pages
in Control condition and eight participants used the profile cards in the
Experimental condition. From there participants (seven in Control and
six in Experimental conditions) accessed candidates’ information from
external webpages (e.g., personal websites and blogs) to get a better
understanding about the candidate. For example, P11 commented: ‘‘I
like to see what he writes in [his] page, what parts [of contribution] is
he proud of’’. Participants reported that with Visual Resume it was
convenient to access candidate’s personal websites. For example, P18
said: ‘‘VR tool provides links to candidates website, which is nice and I like
it... just under the profile picture...which makes the external website more
visible’’.

Amount of contribution: Participants in both Control (six) and Ex-
perimental (seven) conditions considered the amounts of contribution
as important when selecting candidates. P17 mentioned the following
factors helped determine her top two choices: ‘‘(1) volume of work, (2)
contributing to a lot of different projects including rails, . . . , (3) being very
active in GitHub, (4) having a lot of recent activity, (5) participating a lot
in the community, answering lots of questions about rails, (6) having lots of
repositories linked to rails’’. Similarly, P11 used the popularity (number
of stars) of a project that the candidate had started as a criterion for
selection: ‘‘...one of the projects that she [Akira] created has 4000 stars and
it’s very well used in rails community’’. On the other hand, participants
considered a low number of contributions as a criterion for elimination;
P20 selected candidates based on their lack of activity or presence, as
he stated ‘‘he [Jeremy] has minimal Stack Overflow presence’’. Similarly,
P11 selected two candidates because ‘‘they have less contributions and
fewer commits compared to the top two [candidates]’’.

Recent activity: We define recent activity as the amount of can-
idates’ recent contributions in GitHub. It was one of the most used
nformation feature. Five and six participants in the Control and Ex-
erimental conditions, respectively, used the commit history activity as
heir primary cue. P16 mentioned, ‘‘Xavier has a lot of rails contribution
ecently’’. In contrast, a lack of activity was used to dismiss candidates,
s P11 commented, ‘‘[Candidate’s] activity has died out in the past 2 years.
e is not as active as other candidates’’. Most participants resorted to
sing recent activities (in addition to the amounts of contribution) as a
ey selection criteria: P19 commented, ‘‘commits are enough for finding
op [candidates]’’.

Commit Aspects: Commit aspects included the change content of
he commit (diffs and modified files) as well as the commit message
escribing the change (Fig. 1c). This cue was used more in the Exper-
mental condition (eight participants evaluated commit aspects), but
nly one participant did this in the Control condition. This was likely
ecause Visual Resume made it easier to access the commit aspects.
12 commented, ‘‘I made a decision based on candidates’ commits, and
hether they have related contribution to Rails and also the projects and
lugins [which] the candidates created for Rails and how much of those
ere followed [by other GitHub users]’’.

Commits vs. Issues: While evaluating candidates, participants used
he data on commits more often than on issues. In the Control con-
10

ition, five participants viewed commits, but only one viewed the
Fig. 5. Average participant actions (number of clicks) for various features in Control
and Experimental conditions.

issue list; whereas in the Experimental condition eight participants
viewed commits and five viewed the issue list. The reason for this
could be that commits provide more details about the history (both
success and failure) of the candidate, while the list of issues opened
by the candidate only provides information about failures identified by
contributors. For instance, P19 commented, ‘‘commits show everything,
tell a lot from commits, how someone is active’’. And later he commented,
‘‘...don’t need to look at issues, if they do not find a lot of failures, there are
not lots of issues’’.

Type of projects: Participants used the repository list in order to
identify the type of projects to which a candidates contributed (five
participants in Control and seven in Experimental). They used the
GitHub repository list and radial charts in the Control and Experimental
conditions, respectively. For example, in the Control condition P12
selected Akira as his second top candidate as she had high reputation
score and was working on a popular project while, rejecting Jose (can-
didate) commented ‘‘I didn’t see any rails on the first glance’’. Similarly,
in the Experimental condition, P12 selected Aaron (candidate) and
commented, ‘‘Because he is the author of Rack, which is another hugely
influential project. It’s much more ruby oriented’’., while P17 rejected
Vijay (candidate) and commented, ‘‘He doesn’t have lot of core commits
[in a large project], he has a lot of small projects’’.

In summary, participants evaluated cues from a variety of informa-
tion features to make their candidate selection. Although the overall
time completion is similar for the Control and Experimental conditions,
participants tended to use more information features when using Visual
Resume.

6.3. How information was accessed?

Information Density: ‘‘Information density is the compactness of
an interface in terms of the amount of information’’ [41]; Interfaces
with higher information density require less ‘‘moving around’’ to access
information and there is a higher likelihood that users will see the
information they are foraging for more quickly [42]. Visual Resume
aggregates information from multiple sources and has a higher infor-
mation density than the individual pages in GitHub or Stack Overflow.
As a result, participants when using Visual Resume took about half the
actions (clicks) than when accessing the same types of information in
the Control condition. Fig. 5 shows the average participant actions for
various features in the Control and Experimental conditions.

Additionally, participants in the Experimental condition accessed
more information than those in the Control condition. All ten partic-
ipants ‘‘drilled down’’ into the cards to get a deeper view of a commit,
issue, answer or question. For instance, P20 reviewed candidates’

(ruby) programming language experiences across multiple repositories



Information and Software Technology 138 (2021) 106633S.K. Kuttal et al.
Fig. 6. Comparing candidates’ contribution experience by programming language or
repository through the radial chart feature of Visual Resume. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

by using the ‘‘repository’’ percentage diagram (the green radial chart
in the profile card in Fig. 6). He viewed all five candidates’ profile
cards and then hovered over the repository percentages to identify (1)
the number of repositories to which the candidate contributed and (2)
the major programming language for each repository. In the Control
condition, participants rarely investigated deeper into contributions.
Only one participant manually drilled down to investigate commit
details.

Side-by-side comparison: When evaluating candidates, partici-
pants kept track of the different candidates either mentally (Control
condition) or by using the cards feature in Visual Resume. In the
Control condition, five participants had to keep a mental record of all
the differences between multiple candidate profiles while comparing
them by switching between the candidates profiles (in GitHub site). In
the Experimental condition, all ten participants kept open multiple can-
didate profiles (Visual Resume profile cards) and ‘‘closed’’ a card when
they rejected a candidate. Keeping multiple profile cards allowed for
easy comparisons across candidates. Participants found Visual Resume
useful for making such comparisons, as P12 said, ‘‘The first thing I need
to determine is what the candidate contributed to and whether they were
Rails oriented. Visual Resume is nice for comparison purposes’’.

7. Discussions

Participants when using Visual Resume accessed more information
sources related to candidates’ technical and social skills, and did so
in a shorter period of time. Our results indicate that Visual Resume’s
success arose from its ability to: (1) present both technical and soft
skills through the same portal, (2) provide aggregated views of candi-
date’s contributions, (3) allow drilling down to details about each type
contribution, and (4) allow easy comparison of candidates via movable
cards that could be arranged to match participants’ needs. The main
distinction of Visual Resume was that it allowed participants to effi-
ciently scrutinize information through the cards, whereas in the Control
condition participants had to ‘‘work harder’’ by scrolling through a
long list of projects, switching between portals and multiple tabs (or
windows), to evaluate who owns which projects, what programming
languages candidates’ worked in, the quality of the contributions, and
so forth—a time-consuming and inefficient process.

What about contribution quality? A key feedback from the work
in [13] was the need for a mechanism to better understand candidates’
contributions. Therefore, the current version of Visual Resume provided
explicit quality attributes for candidates’ GitHub contributions such as,
commits that passed test cases and their closeness to the core (Fig. 1),
summary of closed issues and the status of pull requests (Fig. 2),
as well as Stack Overflow contributions details such as summary of
accepted answers (Fig. 3). All ten participants in the Experimental
11
conditions drilled down into the cards to get a deeper understanding
of the contributions. Very few participants in the Control condition did
so. Instead participants mainly relied on the amounts and recency of
contributions.

Six out of ten participants in the Experimental condition explic-
itly mentioned that the quality details of the commits (passing test
cases and centrality of code commits) helped them select their top
candidates. A few participants, both in Control and Experimental con-
ditions, used (what we term as) community indicators—up-votes (three
participants in each condition), number of followers (two and three
participants in Control and Experimental, respectively), association
with popular project (three and four in Control and Experimental,
respectively), and reputation points (six in each condition)—as prox-
ies to evaluate the quality of candidates’ contributions. This shows
that participants in addition to making their own assessments, also
depended on the community’s evaluation of the candidate based on
their social standing.

Finally, when evaluating candidates participants also factored in
‘‘availability’’ along with quality. For example, some participants
avoided selecting candidates who they felt would be overqualified. For
example, P12 commented ‘‘He is a creator of a language and his email
address is a company name. He probably owns that company. I doubt that
Jeremy is available. So I don’t want to spend energy’’.

What about interviews? Although participants felt reviewing
the activity traces in GitHub and Stack Overflow was important to
determine candidates’ expertise, they mentioned that evaluating con-
tribution traces in these communities cannot replace interviews. For
example, P12 after selecting the top two candidates commented, ‘‘I
prefer to talk to them [candidates] next’’.

Participants were comfortable evaluating coding competency and
motivation from the online traces, but wanted to talk with the can-
didates to evaluate collaboration and management skills. For example
P18 commented, ‘‘I cannot judge [collaboration skills] from here’’. and
P17 mentioned, ‘‘I don’t know how can GitHub or Stack Overflow data
help on [assessing] management skills’’. This is inline with prior work
that found interviews help assess qualities such as integrity, personality,
emotional intelligence, capacity as a team player, empathy, and cross-
cultural awareness [43–48]. These qualities can rarely be captured via
data from online communities.

The role of Visual Resume, therefore, is not to be a substitute for in-
terviews. Instead it aims to help interviewers easily digest information
currently fragmented across different sites and types of data to make
an initial assessment of candidates. As P19 commented: ‘‘This tool is
great for filtering out unwanted candidates and find top candidates who can
continue to the interview step: a screen through for interview’’. Therefore, its
important that interviewers recognize this fact and not soleley depend
on aggregator tools such as Visual Resume.

What about behavioral adaptation? Visual Resume aggregates
and presents contribution data from two different types of online
technical communities. As with any dashboard it highlights a handful of
metrics (contributions and proxies of their quality) from these commu-
nities. But highlighting metrics can lead to behavioral adaptations [49].
First, individuals can self-monitor their behavior or compare their
contributions with others’, which might foster competition and in worst
cases feelings of inadequacies. The latter may especially be a problem
for newcomers or those with lower self-efficacy.

Second, the metrics being showcased may prompt users to change
their contributions to better suit what the system can reliably track. For
example, Visual Resume does not currently track code reviews, which
may prompt people to not participate in this really important activity.
Similarly, editing questions in Stack Overflow is another important
activity that is not currently tracked. Of course, in future versions of
Visual Resume, we can add these as metrics, but there still will remain
other difficult to track, but nevertheless important activities such as
mentoring or managing a project.



Information and Software Technology 138 (2021) 106633S.K. Kuttal et al.

a
h
O
t
a
t
l

a
i
a
p
d
s
l
b

p
o
i
t
c

a
(
S
s
c

O
M
a
s
i
f

b
B
p
s
p
a
a

m
g
d
a
v
v

e
w
t
a
d

a
t
p

Finally, individuals may optimize for the tracked parameter rather
than the underlying concept, leading to a kind of ‘cheating’. For ex-
ample, since the number of commits is a tracked metric, contributors
may make small, but numerous commits. This kind of gamification
might already be a challenge with sites like GitHub [50,51] that
display contribution charts or Stack Overflow that tracks reputation
points [52].

Challenges with behavioral adaptations are problems that afflict
dashboards and other mining related approaches. Overcoming these
challenges requires individuals (developers, managers and hirers) to
recognize the dark side of metrics—that metrics present only certain
facets of an individual, can be gamified, and does not alone define a
person (or their contributions).

What about excluding underrepresented populations? Visual
Resume aggregates and presents the contribution traces (metrics, tags,
and statistics summary) captured in peer production sites, which are
often used by developers [10] and hirers [2]. However, the information
in such peer production sites has intrinsic societal biases such as, low
gender and non-English speaking diversity. Research has found that
women: (1) newcomers (who have gendered profiles) have low accep-
tance of pull requests in OSS projects [53], (2) are more active when
they have peer-parity [54], and (3) abstain from using gamification
and gamified elements (such as badges or reputation points) [55,56].
Similarly, past work has found that non-English speaking developers
are often inactive on platforms like Stack Overflow while being active
on their native language platforms equivalent of Stack Overflow [57].

Therefore, peer production sites, as well as aggregator tools like
Visual Resume, need to pay particular attention in finding ways to
minimize reinforcing the harmful effects of under representation of
these populations. Visual Resume seeks to reduce unconscious biases
by focusing on transparency in decision making as well as aggregating
multiple types of contributions and highlighting contribution quality
in addition to quantity. Future work on Visual Resume can do more
to highlight community building activities such as, (1) code review
efforts and review quality by extracting pull request comments, (2)
maintenance activities in GitHub such as issue closing/editing, (3)
maintenance activities in Stack Overflow such as cleaning questions or
answers, and (4) community building activities such as OSS advocacy
or event creation. Visual Resume can be easily extended to tap into
other peer-production sites (e.g., GitLab or Stack Overflow sites in other
languages) by adding a new ‘‘Data Extractor’’ component (Fig. 4). If
the concept of Visual Resume gets widely adopted, we can envision
individuals creating their own Visual Resume profiles that import their
own traceable contribution histories (e.g., private code repositories).
Another interesting future work is to investigate the impact of the de-
mographics data embedded in the contributor profiles (picture, name,
followers) on hiring decision making. Recent works have investigated
the biases in how humans review code as a function of its apparent
author [58] or social signals embedded in profiles [10]. A similar
multi-factor user study on hiring decisions that controls the different
profile elements can identify the impact of each of these factors and
their interaction effects, which can then inform the design of future
aggregator tools.

7.1. Implications

Tools like Visual Resume can be used by managers and software
developers to hire prospective candidates in their teams and company.
Further, it can be used by individual programmers for self-improvement
by observing their progress and comparing with peers. Additionally,
team members can track the online collaboration and communication
traces as Visual Resume can be extended to monitor and then visualize
these traces within the software teams. It can be also used by project
Gatekeepers – individuals who are familiar with the team knowledge
12

repository – and guide the information seekers to desired experts. f
8. Related work

We identified six popular and freely available aggregator tools
and sites. CVExplorer [9], Open Source Resume [8] and Statocat [11]
create developers’ profiles based on their activities in GitHub. Fur-
ther, Statocat provides statistics of the programming languages used
on GitHub. MasterBranch [12] and CoderWall [59] collect activities
across several code hosting sites (e.g. GitHub and BitBucket). CoderWall
wards achievement badges to developers, such as when the developer
as a number of original repositories in a programming language.
penHub generates developer profiles based on activities collected by

heir own code search engine (OpenHub Code search), and also awards
chievement badges based on amount of activities. Here, we compare
hese aggregator sites with our tool based on the design guidelines
isted in Section 3 (see Table 4).

DG1 — Provide cues for technical and soft skills: The majority of
ggregator tools provide overviews of contributions that are typically
nferred as technical skills. CVExplorer, MasterBranch, OSR, Statocat,
nd OpenHub [60] provide information about the numbers of commits,
rojects contributed to, and programming languages, but they do not
isplay interaction histories for inferring soft skills (e.g. comments, an-
wers, or questions). CoderWall, on the other hand, lists programming
anguages and project names in which the developer is interested in,
ut it provides no information on code artifacts.

DG2 — Provide cues for quality: Most tools provide links to
roject pages from the code hosting site but do not provide direct cues
f quality. The users can manually investigate activities in the project to
dentify the source code they committed. Statocat and OSR simply link
o the GitHub developer profile, where a user can investigate project
ontributions on their own.

DG3 — Present social standing in the community: CoderWall
nd OpenHub award achievement badges to developers who meet
site-specific) criteria based on the number of their contributions.
tatocat and OSR display the number of followers to suggest their
ocial standing. None of the tools provide social standing in the Q&A
ommunities.

DG4 — Aggregate cues across projects and sites: CVExplorer,
SR and Statocat focus only on contributions in GitHub, whereas
asterBranch, CoderWall, and OpenHub create developer profiles that

re generated by aggregating activities across multiple code sharing
ites (See DG4 in Table 4). None of these tools aggregate provide
nformation about contribution on both code hosting sites and Q&A
orums.

DG5 — Summarize activity: CVExplorer lists the developer’s skills
ased on the type of repositories that they contributed to. Master-
ranch presents the total lines-of-code of contributions categorized per
rogramming language. Similarly, OpenHub, OSR and Statocat provide
tatistics about the number of commits to a repository and also its
rogramming language. Particularly, OSR lists the most recent user
ctivity according to GitHub event log. Thus, these aggregators (as well
s GitHub) are on par in summarizing code contributions.

DG6 — Visualize summaries: OpenHub displays commit sum-
aries as bar charts grouped by projects, and stacked line charts

rouped by languages. OSR and Statocat use pie charts to visualize
eveloper contributions based on programming language. CVExplorer
pplies a wordcloud-like visualization to display the skillset of de-
eloper. However, CoderWall and MasterBranch do not provide any
isualizations.

DG7 — Allow drill down: CoderWall, Statocat and OSR link to
ither developer profiles or repository pages on the code hosting sites,
here users can further find out information details manually. Similar

o Visual Resume OpenHub provide detailed statistics about the commits
nd repositories within its site. However, CVExplorer and MasterBranch
o not provide the drilling down feature.

DG8 — Allow pairwise comparison: Majority of current profile
ggregators do not provide any comparison functionality. OpenHub is
he only tool that provides functionality to allow comparisons between
rojects, programming languages and repositories, but it is not geared

or comparison of developers.



Information and Software Technology 138 (2021) 106633S.K. Kuttal et al.

t
u
C
a
v
t
w
a
m
p
u

a
t
R
r
t
c

t
b

g
l
c
t

Table 4
Table of aggregator sites.

Project Developer/ DG1 DG2 DG3 DG4 DG5 DG6 DG7 DG8

Project
centered

Tech
skills

Soft
skills

Code Q&A

Visual
Resume

Developer Yes Yes Direct Direct #GitHub
followers,
reputation
points

GitHub, Stack
Overflow

#Commits,
#Issues,
#Comments,
#Q&A,
Languages,
Repositories

Language
Commit,
Issue,
Project,
Q&A

GitHub Profile,
Stack
Overflow Profile,
Repository,
Commit,
Post

Yes

OpenHub Developer/
Project

Yes No Indirect None OpenHub
Badges

OpenHub Code
Search

#Commits,
#Projects,
Languages

Commit
Language

Repository,
Commit

Yes

CoderWall Developer Yes Yes Indirect Indirect KARMA
Point

GitHub, Stack
Overflow,
BitBucket,
Codeplex

CoderWall-
badges

None Repository No

CVExplorer Developer/
Project

Yes Yes None None None GitHub Predefined
Skillset

None None No

OSR Developer Yes Yes Indirect None #GitHub
followers

GitHub Languages,
Repositories,
GitHub Event

Commit,
Language

Repository No

Statocat Developer Yes Yes Indirect None #GitHub
followers

GitHub Languages,
Repositories
#Starred
#Forked

Language GitHub
Profile

No

Master
Branch

Developer Yes No None None Rankings,
Developer
Score

Google Code,
SourceForage,
GitHub, Apache,
Codeplex, BerliOS,
Java.net

Languages None None No
9. Conclusions

This paper presents Visual Resume, a contribution aggregator tool,
designed based on the emerging needs of hiring practices. Visual Re-
sume is built using a set of nine design guidelines spanning about what
information to present and how to present it.

A scenario-based user study evaluators assessing job candidates
revealed three key findings.

Cues Utilized for Assessing Candidates: Participants in both
reatments focused on the amounts and type of contributions to first
nderstand candidates’ technical skills and then focus on soft skills.
ues to assess technical skills included candidates’ coding competency
nd their contribution quality (e.g., commit details, the number of up-
otes and stars, the number of popular projects associated or owned,
he number of followers, reputation points). The metrics for soft skills
ere communication skills (e.g., amounts of contributions, community
cceptance of contribution), social competency (e.g., endorsements),
anagement skills (e.g., past project experience, the number of owned
rojects), and motivation (e.g., volume of activity, the number of
p-votes and personal website).

Information Features Used: The information features used with
nd without Visual Resume were amounts of contributions, contribu-
ion history, commit aspects, and type of projects. When using Visual
esume participants had an easy access to candidate’s profiles and
elated external webpages. Further, with Visual Resume they tended
o use more information features and drill down into specifics of a
ontribution.

Information Accessed: Participants when using Visual Resume
ook half the number of actions to access information and utilized its
uilt-in features to conduct side-by-side comparisons of candidates.

Our results suggest that an aggregator built using these design
uidelines is effective beyond conventional approaches and requires
ess cognitive effort. Further, Visual Resume can help developers, re-
ruiters, and managers evaluate developers’ skills and contributions
13

hrough multiple cues before embarking on interviews.
CRediT authorship contribution statement

Sandeep Kaur Kuttal: Conceptualization, Formal analysis, Valida-
tion, Investigation, Writing - original draft, Writing - review & editing.
Xiaofan Chen: Methodology, Software, Conceptualization. Zhendong
Wang: Data curation, Visualization, Investigation, Writing - original
draft. Sogol Balali: Data curation, Writing - original draft. Anita
Sarma: Supervision, Conceptualization, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This material is based upon work supported by the Air Force Office
of Scientific Research under award number FA9550-21-1-0108 and
National Science Foundation 1815486 and 2008089. Any opinions,
findings, and conclusion or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the view
of the Air Force Office of Scientific Research and National Science
Foundation.

References

[1] J. Resig, 2011, https://twitter.com/jeresig/status/33968704983138304/ (Re-
trieved May-2017).

[2] L. Singer, F. Figueira Filho, B. Cleary, C. Treude, M.-A. Storey, K. Schneider,
Mutual assessment in the social programmer ecosystem: An empirical investiga-
tion of developer profile aggregators, in: Proceedings of the 2013 Conference on
Computer Supported Cooperative Work, ACM, 2013, pp. 103–116.

[3] D. Terdiman, Forget linkedin: Companies turn to github to find tech talent,
2012, https://www.cnet.com/news/forget-linkedin-companies-turn-to-github-to-

find-tech-talent/ (Retrieved May-2017).

https://twitter.com/jeresig/status/33968704983138304/
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb2
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb2
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb2
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb2
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb2
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb2
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb2
https://www.cnet.com/news/forget-linkedin-companies-turn-to-github-to-find-tech-talent/
https://www.cnet.com/news/forget-linkedin-companies-turn-to-github-to-find-tech-talent/
https://www.cnet.com/news/forget-linkedin-companies-turn-to-github-to-find-tech-talent/


Information and Software Technology 138 (2021) 106633S.K. Kuttal et al.
[4] J. Marlow, L. Dabbish, Activity traces and signals in software developer recruit-
ment and hiring, in: Proceedings of the 2013 Conference on Computer Supported
Cooperative Work, ACM, 2013, pp. 145–156.

[5] J. Marlow, L. Dabbish, J. Herbsleb, Impression formation in online peer produc-
tion: activity traces and personal profiles in github, in: Proceedings of the 2013
Conference on Computer Supported Cooperative Work, ACM, 2013, pp. 117–128.

[6] G.J. Greene, B. Fischer, Cvexplorer: Identifying candidate developers by mining
and exploring their open source contributions, in: Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering, in: ASE
2016, Association for Computing Machinery, New York, NY, USA, 2016, pp.
804–809, http://dx.doi.org/10.1145/2970276.2970285.

[7] C. Zhou, S.K. Kuttal, I. Ahmed, What makes a good developer? An empirical
study of developers’ technical and social competencies, in: 2018 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC), 2018, pp.
319–321.

[8] T. Jaruchotrattanasakul, X. Yang, E. Makihara, K. Fujiwara, H. Iida, Open source
resume (OSR): A visualization tool for presenting oss biographies of developers,
in: 2016 7th International Workshop on Empirical Software Engineering in
Practice (IWESEP), 2016, pp. 57–62.

[9] Z. Wang, H. Sun, Y. Fu, L. Ye, Recommending crowdsourced software developers
in consideration of skill improvement, in: 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2017, pp. 717–722.

[10] D. Ford, M. Behroozi, A. Serebrenik, C. Parnin, Beyond the code itself: how
programmers really look at pull requests, in: R. Kazman, L. Pasquale (Eds.),
Proceedings of the 41st International Conference on Software Engineering:
Software Engineering in Society, ICSE 2019, Montreal, QC, Canada, May 25-31,
2019, ACM, 2019, pp. 51–60, http://dx.doi.org/10.1109/ICSE-SEIS.2019.00014.

[11] Statocat, 2017, http://www.upsingapore.com/ideas/statocat/ (Retrieved May-
2017).

[12] MasterBranch, 2017, https://masterbranch.com (Retrieved May-2017).
[13] A. Sarma, X. Chen, S. Kuttal, L. Dabbish, Z. Wang, Hiring in the global stage:

Profiles of online contributions, in: Global Software Engineering (ICGSE), 2016
IEEE 11th International Conference on, IEEE, 2016, pp. 1–10.

[14] B. Al-Ani, D. Redmiles, In strangers we trust? Findings of an empirical study
of distributed teams, in: 2009 Fourth IEEE International Conference on Global
Software Engineering, 2009, pp. 121–130.

[15] F.Q. da Silva, C. Costa, A.C.C. Franca, R. Prikladinicki, Challenges and solutions
in distributed software development project management: A systematic literature
review, in: Global Software Engineering (ICGSE), 2010 5th IEEE International
Conference on, IEEE, 2010, pp. 87–96.

[16] J. Noll, S. Beecham, I. Richardson, Global software development and
collaboration: barriers and solutions, ACM Inroads 1 (3) (2010) 66–78.

[17] L. Dabbish, C. Stuart, J. Tsay, J. Herbsleb, Social coding in github: transparency
and collaboration in an open software repository, in: Proceedings of the ACM
2012 Conference on Computer Supported Cooperative Work, ACM, 2012, pp.
1277–1286.

[18] B. Al-Ani, M.J. Bietz, Y. Wang, E. Trainer, B. Koehne, S. Marczak, D. Redmiles,
R. Prikladnicki, Globally distributed system developers: their trust expectations
and processes, in: Proceedings of the 2013 Conference on Computer Supported
Cooperative Work, ACM, 2013, pp. 563–574.

[19] R. Sabherwal, The role of trust in outsourced IS development projects, Commun.
ACM 42 (2) (1999) 80–86.

[20] J. Long, Open source software development experiences on the students’ resumes:
Do they count?-insights from the employers’ perspectives, J. Inf. Technol. Educ.:
Res. 8 (1) (2009) 229–242.

[21] D. Movshovitz-Attias, Y. Movshovitz-Attias, P. Steenkiste, C. Faloutsos, Analysis
of the reputation system and user contributions on a question answering website:
Stackoverflow, in: Proceedings of the 2013 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining, ACM, 2013, pp. 886–893.

[22] J. Tsay, L. Dabbish, J. Herbsleb, Influence of social and technical factors for
evaluating contribution in github, in: Proceedings of the 36th International
Conference on Software Engineering, ACM, 2014, pp. 356–366.

[23] C. Gutwin, R. Penner, K. Schneider, Group awareness in distributed software de-
velopment, in: Proceedings of the 2004 ACM Conference on Computer Supported
Cooperative Work, ACM, 2004, pp. 72–81.

[24] M. Zhou, A. Mockus, What make long term contributors: Willingness and
opportunity in oss community, in: Software Engineering (ICSE), 2012 34th
International Conference on, IEEE, 2012, pp. 518–528.

[25] Upper Rio Grande, What skills do employers want - Workforce solutions,
2017, https://www.yumpu.com/en/document/view/51546223/what-skills-do-
employers-want-workforce-solutions-upper-rio-/6 (Retrieved May-2017).

[26] J. Tsay, L. Dabbish, J.D. Herbsleb, Social media in transparent work environ-
ments, in: Cooperative and Human Aspects of Software Engineering (CHASE),
2013 6th International Workshop on, IEEE, 2013, pp. 65–72.

[27] C.-G. Wu, J.H. Gerlach, C.E. Young, An empirical analysis of open source
software developers’ motivations and continuance intentions, Inf. Manage. 44
(3) (2007) 253–262.

[28] G. Stephan, A. Pahnke, A pairwise comparison of the effectiveness of selected
active labour market programmes in Germany, 2008.

[29] Gitto, 2017, https://gitto.io (Retrieved May-2017).
14
[30] K.J. Jenne, M. Henderson, Hiring a director for a nonprofit agency: A step-by-step
guide, Pop. Gov. (2000) 25.

[31] Visual-resume, 2020, https://github.com/asarma/Visual-Resume (Retrieved May-
2020).

[32] N. Ducheneaut, Socialization in an open source software community: A socio-
technical analysis, Comput. Support. Coop. Work (CSCW) 14 (4) (2005)
323–368.

[33] C. Jergensen, A. Sarma, P. Wagstrom, The onion patch: migration in open source
ecosystems, in: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, 2011, pp. 70–80.

[34] P. Bonacich, Power and centrality: A family of measures, Amer. J. Sociol. 92 (5)
(1987) 1170–1182.

[35] B. Vasilescu, A. Serebrenik, P. Devanbu, V. Filkov, How social q&a sites
are changing knowledge sharing in open source software communities, in:
Proceedings of the 17th ACM Conference on Computer Supported Cooperative
Work & Social Computing, ACM, 2014, pp. 342–354.

[36] Neo4j, 2017, http://www.neo4j.org (Retrieved May-2017).
[37] D3.js, 2017, http://d3js.org (Retrieved May-2017).
[38] Careers 2.0, 2017, https://careers.stackoverflow.com/ (Retrieved May-2017).
[39] CareerBuilder, 2017, http://www.careerbuilder.com/ (Retrieved May-2017).
[40] D. Damian, L. Izquierdo, J. Singer, I. Kwan, Awareness in the wild: Why

communication breakdowns occur, in: Global Software Engineering, 2007. ICGSE
2007. Second IEEE International Conference on, IEEE, 2007, pp. 81–90.

[41] E. Kandogan, Hierarchical multi-window management with elastic layout
dynamics, 1999.

[42] J. Nielsen, Utilize available screen space, 2019, https://www.nngroup.com/
articles/utilize-available-screen-space/ (Retrieved Nov-2019).

[43] M.C. Blackman, D.C. Funder, Effective interview practices for accurately assessing
counterproductive traits, Int. J. Sel. Assess. 10 (1–2) (2002) 109–116.

[44] J.F. Salgado, S. Moscoso, Comprehensive meta-analysis of the construct validity
of the employment interview, Eur. J. Work Organ. Psychol. 11 (3) (2002)
299–324.

[45] C. Sue-Chan, G.P. Latham, The relative effectiveness of external, peer, and
self-coaches, Appl. Psychol. 53 (2) (2004) 260–278.

[46] T.D. Allen, J.D. Facteau, C.L. Facteau, Structured interviewing for OCB: Construct
validity, faking, and the effects of question type, Hum. Perform. 17 (1) (2004)
1–24.

[47] C. Cliffordson, Interviewer agreement in the judgement of empathy in selection
interviews, Int. J. Sel. Assess. 10 (3) (2002) 198–205.

[48] F. Lievens, S. Highhouse, The relation of instrumental and symbolic attributes to
a company’s attractiveness as an employer, Pers. Psychol. 56 (1) (2003) 75–102.

[49] E.T. van Dijk, F. Beute, J.H. Westerink, W.A. Ijsselsteijn, Unintended effects of
self-tracking, in: CHI’15, April 18–April 23, 2015, Seoul, South-Korea. Workshop
on ‘beyond Personal Informatics: Designing for Experiences of Data’, 2015, p. 5.

[50] L. Moldon, M. Strohmaier, J. Wachs, How gamification affects software devel-
opers: Cautionary evidence from a quasi-experiment on github, 2020, arXiv:
2006.02371.

[51] L. Singer, K. Schneider, It was a bit of a race: Gamification of version control, in:
Second International Workshop on Games and Software Engineering: Realizing
User Engagement with Game Engineering Techniques (GAS), 2012, pp. 5–8.

[52] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, B. Hartmann, Design lessons
from the fastest q&a site in the west, in: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, in: CHI ’11, Association for Computing
Machinery, New York, NY, USA, 2011, pp. 2857–2866.

[53] J. Terrell, A. Kofink, J. Middleton, C. Rainear, E. Murphy-Hill, C. Parnin, J.
Stallings, Gender differences and bias in open source: Pull request acceptance of
women versus men, PeerJ Prepr. 4 (2016) e1733v2, http://dx.doi.org/10.7287/
peerj.preprints.1733v2.

[54] D. Ford, A. Harkins, C. Parnin, Someone like me: How does peer parity influence
participation of women on stack overflow? in: A.Z. Henley, P. Rogers, A. Sarma
(Eds.), 2017 IEEE Symposium on Visual Languages and Human-Centric Com-
puting, VL/HCC 2017, Raleigh, NC, USA, October 11-14, 2017, IEEE Computer
Society, 2017, pp. 239–243, http://dx.doi.org/10.1109/VLHCC.2017.8103473.

[55] A. May, J. Wachs, A. Hannák, Gender differences in participation and reward
on stack overflow, Empir. Softw. Eng. (2019) 1–23.

[56] B. Vasilescu, A. Capiluppi, A. Serebrenik, Gender, representation and online
participation: A quantitative study of stackoverflow, in: Proceedings of the
2012 ASE International Conference on Social Informatics, SocialInformatics 2012,
2012, http://dx.doi.org/10.1109/SocialInformatics.2012.81.

[57] N. Oliveira, M. Muller, N. Andrade, K. Reinecke, The exchange in stackexchange:
Divergences between stack overflow and its culturally diverse participants,
Proc. ACM Hum.-Comput. Interact. 2 (2018) 1–22, http://dx.doi.org/10.1145/
3274399.

[58] Y. Huang, K. Leach, Z. Sharafi, N. McKay, T. Santander, W. Weimer, Biases and
differences in code review using medical imaging and eye-tracking: Genders,
humans, and machines, in: Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2020, 2020, pp. 456–468.

[59] CoderWall, 2017, https://coderwall.com/ (Retrieved May-2017).
[60] OpenHub, 2017, https://www.openhub.net (Retrieved May-2017).

http://refhub.elsevier.com/S0950-5849(21)00100-2/sb4
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb4
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb4
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb4
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb4
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb5
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb5
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb5
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb5
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb5
http://dx.doi.org/10.1145/2970276.2970285
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb7
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb7
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb7
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb7
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb7
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb7
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb7
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb8
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb8
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb8
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb8
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb8
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb8
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb8
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb9
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb9
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb9
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb9
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb9
http://dx.doi.org/10.1109/ICSE-SEIS.2019.00014
http://www.upsingapore.com/ideas/statocat/
https://masterbranch.com
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb13
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb13
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb13
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb13
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb13
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb14
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb14
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb14
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb14
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb14
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb15
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb15
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb15
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb15
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb15
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb15
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb15
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb16
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb16
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb16
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb17
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb17
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb17
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb17
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb17
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb17
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb17
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb18
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb18
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb18
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb18
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb18
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb18
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb18
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb19
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb19
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb19
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb20
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb20
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb20
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb20
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb20
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb21
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb21
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb21
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb21
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb21
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb21
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb21
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb22
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb22
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb22
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb22
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb22
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb23
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb23
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb23
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb23
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb23
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb24
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb24
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb24
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb24
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb24
https://www.yumpu.com/en/document/view/51546223/what-skills-do-employers-want-workforce-solutions-upper-rio-/6
https://www.yumpu.com/en/document/view/51546223/what-skills-do-employers-want-workforce-solutions-upper-rio-/6
https://www.yumpu.com/en/document/view/51546223/what-skills-do-employers-want-workforce-solutions-upper-rio-/6
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb26
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb26
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb26
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb26
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb26
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb27
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb27
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb27
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb27
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb27
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb28
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb28
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb28
https://gitto.io
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb30
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb30
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb30
https://github.com/asarma/Visual-Resume
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb32
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb32
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb32
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb32
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb32
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb34
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb34
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb34
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb35
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb35
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb35
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb35
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb35
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb35
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb35
http://www.neo4j.org
http://d3js.org
https://careers.stackoverflow.com/
http://www.careerbuilder.com/
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb40
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb40
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb40
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb40
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb40
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb41
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb41
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb41
https://www.nngroup.com/articles/utilize-available-screen-space/
https://www.nngroup.com/articles/utilize-available-screen-space/
https://www.nngroup.com/articles/utilize-available-screen-space/
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb43
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb43
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb43
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb44
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb44
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb44
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb44
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb44
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb45
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb45
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb45
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb46
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb46
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb46
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb46
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb46
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb47
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb47
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb47
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb48
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb48
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb48
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb49
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb49
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb49
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb49
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb49
http://arxiv.org/abs/2006.02371
http://arxiv.org/abs/2006.02371
http://arxiv.org/abs/2006.02371
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb51
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb51
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb51
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb51
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb51
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb52
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb52
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb52
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb52
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb52
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb52
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb52
http://dx.doi.org/10.7287/peerj.preprints.1733v2
http://dx.doi.org/10.7287/peerj.preprints.1733v2
http://dx.doi.org/10.7287/peerj.preprints.1733v2
http://dx.doi.org/10.1109/VLHCC.2017.8103473
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb55
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb55
http://refhub.elsevier.com/S0950-5849(21)00100-2/sb55
http://dx.doi.org/10.1109/SocialInformatics.2012.81
http://dx.doi.org/10.1145/3274399
http://dx.doi.org/10.1145/3274399
http://dx.doi.org/10.1145/3274399
https://coderwall.com/
https://www.openhub.net

	Visual Resume: Exploring developers' online contributions for hiring
	Introduction
	Background
	Guidelines for creating Visual Resume
	What to present?
	How to present?
	How to compare?

	Visual resume
	Design of visual resume
	Contributor profile
	Historical activities
	Quality of work
	Other cues

	User interface
	Implementation

	User study
	Study participants
	Study design
	Job candidate selection
	Limitations of study design

	Results
	What cues were utilized for selecting candidates?
	Cues for technical skills
	Cues for soft skills

	What information features were used?
	How information was accessed?

	Discussions
	Implications

	Related work
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


