2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

Semantic Clone Detection: Can Source Code
Comments Help?

Akash Ghosh
Tandy School of Computer Science
University of Tulsa
akashghosh @utulsa.edu

Abstract—Programmers reuse code to increase their productiv-
ity, which leads to large fragments of duplicate or near-duplicate
code in the code base. The current code clone detection techniques
for finding semantic clones utilize Program Dependency Graphs
(PDG), which are expensive and resource-intensive. PDG and
other clone detection techniques utilize code and have completely
ignored the comments - due to ambiguity of English language,
but in terms of program comprehension, comments carry the
important domain knowledge. We empirically evaluated the
accuracy of detecting clones with both code and comments on
a JHotDraw package. Results show that detecting code clones
in the presence of comments, Latent Dirichlet Allocation (LDA),
gave 84% precision and 94% recall, while in the presence of
a PDG, using GRAPLE, we got 55% precision and 29% recall.
These results indicate that comments can be used to find semantic
clones. We recommend utilizing comments with LDA to find
clones at the file level and code with PDG for finding clones at
the function level. These findings necessitate a need to reexamine
the assumptions regarding semantic clone detection techniques.

I. INTRODUCTION

“Don’t reinvent the wheel, just realign it” A common
practice for programmers to increase their productivity is
copying an existing piece of code and changing it to suit a
new context or problem. This reuse mechanism promotes large
fragments of duplicate or near-duplicate code in the code base
[2]. These duplicates are called code clones. Research shows
that about 7% to 23% of software systems contain duplicated
codes [9]-[12].

In software engineering, many techniques [1] have been
proposed to detect code clones based on token similarity
(e.g., CCFinder [18], CloneMiner [19] and CloneDetective
[17]), Abstract Syntax Tree(e.g., CloneDR [13], Deckard [14])
and Program Dependency Graph (e.g., [3], [6], [7], [15],
[16]). One of the most challenging types of clones to find
are semantic clones - code fragments that are functionally
similar but may be syntactically different. Techniques based
on Program Dependency Graph (PDG) are one of the most
notable mechanisms to detect semantic code clones [3] as it
abstracts many arbitrary syntactic decisions that a programmer
made while constructing a function. However, PDG-based
techniques are computationally expensive, as they require
resource-intensive operations to detect the clones.

Current code clone detection techniques do not include
source comments. From a program comprehension point of

978-1-5386-4235-1/18/ $31.00 © 2018 IEEE

Sandeep Kaur Kuttal
Tandy School of Computer Science
University of Tulsa
sandeep-kuttal @utulsa.edu

view, these comments carry important domain knowledge and
also might assist other programmers to understand the code.
One of the reasons, to ignore code comments is due to the
ambiguity of the English language. For humans, it is easy
to comprehend the similarity or difference between words
or topics, but a machine may treat the words differently.
However, with recent advancement in machine learning and
natural language processing tools we hope to detect clone sets
by using LDA.
In this paper, we investigated:
« RQ1: Does the use of comments help in detecting se-
mantic clones in the code base?
« RQ2: Does a PDG based technique, which just uses code
for detection of semantic clones, perform equivalently to
an LDA based technique, which uses comments?

II. METHODOLOGY
A. Dataset

In this work, JHotDraw-a java package-has been used which
contains 310 java source files with 27kLLOC. JHotDraw [8] has
been widely used in clone detection studies [5].

B. Procedure

1) PDG: GRAPLE [3], [4], an existing PDG based clone
detection tool, was used to identify clones within the Java
package and JPDG to create an undirected graph (vertex-
edge, veg) for the whole package. The tool generates a JSON
file with edges and vertices in the form of a dictionary.
This veg file was then used as an argument along with min-
support, sample-size, min-vertices, and selection probability
for GRAPLE. The clone sets were generated with and without
the selection probabilities with support=5, sample-size=100,
and min-vertices=_8.

2) LDA: Python 3.6 and Regex Expression were used to
extract the comments from the source files. All comments
were included, except the copyright comments, since it does
not contain any information related to the functionality of
the source code. Once the comments were extracted, it was
normalized by cleaning the stop words and the punctuations.
With this normalized texts, a dictionary was created which
was used to create the Doc-Term matrix. The LDA model was
trained using the corpus and dictionary mentioned above. Then
the passes and iterations were set to a specified value. The

315

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

°

Precision

s

o4

03

02
° 200 %00

0 800 1000

(a) Precision.

Recall

Iterations
10
o8
os
ot \

200 400) 800 1000

°

Iterations

(b) Recall.

Fig. 1. Precision and Recall.

comment files were passed as an argument to the model to gen-
erate the relative topics. Once all the clone sets were generated,
we calculated the precision - | DyeportedNDactual | 5| Dreported|
and recall - |Dreportedeactual|+|Dactual|-

D eported 18 the set of multi-sets reported by the model and
Dgctuar 18 the ground truth which contains 52 clone sets built
manually in 45 hours.

ITI. RESULTS
A. RQI: Can code comment help?

To understand whether comments can assist in detecting
code clones, the model was trained and the outputs (clone
sets) were analyzed in two different ways.

1) Way 1: The LDA model was trained using the files as
the corpus. With topic limit set to 100, we were able to extract
66 clone sets (274 files). The precision and recall found are
mentioned in Table 1.

2) Way 2: To understand how the clone sets varied in terms
of precision and recall, the model was trained over a range of 1
to 1000 topics. The parameters were set at 1000 iterations with
50 passes. Table 1 shows the best precision found with topic
set to 975, which generated 7 clone sets with 21 files. From
Fig:1 it is evident that with increased iterations fewer clone
sets were found. Also, as the number of iterations increased
the precision increased as well with a global maxima at 975.
However, the recall decreased.

To further add, the best clone sets in comparison with the
ground truth were the clones sets generated by topic number
975. The clone sets were manually analyzed to check the
authenticity, it was observed that the matched clone sets i.e
| DyeportedNDactuat| have high similarities in terms of object
or instance creation.

B. RQ2: PDG vs LDA: code vs comments?

Further, to compare a PDG based technique with LDA, we
used GRAPLE [3]. We evaluated GRAPLE with and without
the selection probability P;, the later was used to avoid the
“Curse of Dimensionality”.

1) Without Pr: In this evaluation technique the sample-size
were varied multiple times, setting it from 20 to 200, but
in most of the cases very small increase in clone sets were
observed. Precision and recall mostly varied between 50% to
55%. Table 1 depicts the precision and recall for sample-size
100 with min-vertices 8 and support set to 5.

2) With Pr: Using the selection probabilities and with the
above mentioned specification, we generated 80 clone sets.
Table 1 shows the 22 clone sets were found while using
selection probabilities, and 17 clone sets were found without
using selection probabilities. Comprehensive clone sets were
reported by the model with probability in expense of 30
hours and 74 GB of memory. However, the model without
probability reported 17 clone sets in 4.5 secs and consumed
481.5 MB. Moreover, 16 out of 17 clone sets which were
reported by model without probability were also reported by
the model with probability.

Evidently, the precision and recall for LDA are better than
PDG. Upon analyzing the clone sets returned by PDG and
LDA, it was observed that LDA was able to find more clone
sets. In addition, LDA quickly found the clones based on
similar comments compared to PDG, which took hours. Our
dataset consists of 27 KLLOC, so for such packages PDG based
techniques can perform decently, but for larger sizes as noticed
by [3] they can deplete the resources.

TABLE I
PRECISION AND RECALL FOR LDA AND PDG.
#clonesets | Recall | Precision
Way 1 66 94.86 84.21
LDA Way 2 7 28.61 88.57
Without Pr. 17 27.84 52.94
PDG With Pr. 22 28.7 55.39

IV. CONCLUSION

Our results show that comments can be utilized with LDA
and are equivalent to sophisticated PDG based techniques. One
approach would be using comments with LDA to detect clone
sets at the file level, as this process is less resource-intensive,
and applying PDG based code detection techniques at the
function level. Our study provides the very first evidence that
comments which are underrated in clone detection research
can be utilized effectively.

316

(1

(2]

(3]

[4]

[3]

(6]

(71

(8]
[91

[10]

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

REFERENCES

C.K. Roy, M.E. Zibran, and R. Koschke, “The vision of software clone
management: Past, present, and future (Keynote paper)”, in Proceedings
of Software Maintenance, Re-engineering and Reverse Engineering,
pp.18-33, 2014.

J. Howard Johnson, “Visualizing textual redundancy in legacy source”,
in Proceedings of Centre for Advanced Studies on Collaborative, pp.32,
1994.

TAD Henderson and A Podgurski, “Sampling code clones from program
dependence graphs with GRAPLE, in Proceedings of International
Workshop on Software Analytics, pg 47-53, 2016.

H. Cheng, X. Yan, and J. Han, “Mining Graph Patterns. In Frequent
Pattern Mining”, in Managing and Mining Graph Data, pp.307-338,
2010.

Y. Lin, Z. Xing, Y. Xue, Y. Liu, X. Peng, J. Sun, and W. Zhao, “Detecting
differences across multiple instances of code clones”, in Proceedings of
International Conference on Software Engineering, pp.164-174, 2014.
J. Krinke, “Identifying similar code with program dependence graphs”,
in Proceedings of Working Conference on Reverse Engineering, pp.301-
309, 2001.

R. Komondoor and S. Horwitz, “Using Slicing to Identify Duplication
in Source Code”, in Proceedings of International Symposium on Static
Analysis, pp.40-56, 2001.

JHotDraw: http://www.jhotdraw.org/

B. Baker, “On Finding Duplication and Near-Duplication in Large
Software Systems”, in Proceedings of Working Conference on Reverse
Engineering, pp.86-95, 1995.

I. Baxter, A. Yahin, L. Moura and M. Anna, “Clone Detection Using
Abstract Syntax Trees”, in Proceedings of International Conference on
Software Maintenance, pp.368-377, 1998.

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

317

C. Kapser and M. Godfrey, “Supporting the Analysis of Clones in
Software Systems: A Case Study”, Journal of Software Maintenance
and Evolution: Research and Practice - IEEE International Conference
on Software Maintenance, Vol.18 (2), pp.61-82, 2006.

J. Mayrand, C. Leblanc and E. Merlo, “Experiment on the Automatic
Detection of Function Clones in a Software System Using Metrics”,
in Proceedings of Proceedings of International Conference on Software
Maintenance, pp.244-253, 1996.

F. Al-Omari, I. Keivanloo, C. K. Roy, and J. Rilling, “Detecting
clones across microsoft .net programming languages”, in Proceedings
of Working Conference on Reverse Engineering, pp.405-414, 2012.

S. Bazrafshan, and R. Koschke, “An empirical study of clone removals”,
in Proceedings of International Conference Software Maintenance,
pp-50-59, 2013.

D. Chatterji, J. C. Carver, and N. A. Kraft, “Cloning: The need to
understand developer intent”, in International Workshop on Software
Clones, pp. 14-15, 2013.

J. R. Cordy, “Comprehending reality: Practical barriers to industrial
adoption of software maintenance automation”, in International Work-
shop on Program Comprehension, pp.196-206, 2003.

N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou, and A. Hassan,
“An empirical study on inconsistent changes to code clones at the release
level”, in Working Conference on Reverse Engineering, pp.760-776,
2012.

S. Bouktif, G. Antoniol, M. Neteler, and E. Merlo, “A novel approach
to optimize clone refactoring activity”, in Proceedings of Conference on
Genetic and Evolutionary Computation, pp.1885-1892, 2006.

E. Adar and M. Kim, “SoftGUESS: Visualization and exploration of
code clones in context”, in Proceedings of International Conference on
Software Engineering, pp.762-766, 2007.

